theMadKing
theMadKing

Reputation: 2074

Applying aggregate function to every column of certain type

So I wrote the basis (that doesnt work) on how to average every FloatType column in my data frame like so:

val descript = df.dtypes

  var decimalArr = new ListBuffer[String]()
  for(i <- 0 to (descript.length - 1)) {
    if(descript(i)._2 == "FloatType") {
      decimalArr += descript(i)._1
    }
  }

  //Build Statsitical Arguments for DataFrame Pass
  var averageList = new ListBuffer[String]()
  for(i <- 0 to (decimalArr.length - 1)){
    averageList += "avg(" + '"' + decimalArr(i) + '"' + ")"
  }

  //sample statsitical call
  val sampAvg = df.agg(averageList).show 

The example that gets produced by averageList is:

ListBuffer(avg("offer_id"), avg("decision_id"), avg("offer_type_cd"), avg("promo_id"), avg("pymt_method_type_cd"), avg("cs_result_id"), avg("cs_result_usage_type_cd"), avg("rate_index_type_cd"), avg("sub_product_id"))

The clear problem is that val sampAvg = df.agg(averageList).show does not allow listBuffer as the input. So even bringing it .toString doesnt work it wants org.apache.spark.sql.Column*. Does anyone know a way I can do something in the manner I am trying.

Side Note I am on Spark 1.3

Upvotes: 0

Views: 1561

Answers (1)

zero323
zero323

Reputation: 330413

You can first build a list of the aggregate expressions

import org.apache.spark.sql.functions.{col, avg, lit}

val exprs = df.dtypes
  .filter(_._2 == "DoubleType")
  .map(ct => avg(col(ct._1))).toList

and either pattern match

exprs match {
  case h::t => df.agg(h, t:_*)
  case _ => sqlContext.emptyDataFrame
}

or use a dummy column

df.agg(lit(1).alias("_dummy"), exprs: _*).drop("_dummy")

If you want to use multiple functions you can flatMap either explicitly:

import org.apache.spark.sql.Column
import org.apache.spark.sql.functions.{avg, min, max}

val funs: List[(String => Column)] = List(min, max, avg)

val exprs: Array[Column] = df.dtypes 
   .filter(_._2 == "DoubleType")
   .flatMap(ct => funs.map(fun => fun(ct._1)))

or using for comprehension:

val exprs: Array[Column] = for {
    cname <-  df.dtypes.filter(_._2 == "DoubleType").map(_._1)
    fun <- funs
} yield fun(cname)

Convert exprs to List if you want to use pattern match approach.

Upvotes: 3

Related Questions