Reputation: 161
I've two interfaces:
public interface IAmA
{
}
public interface IAmB<T> where T : IAmA
{
}
And two classes implementing these interfaces like this:
public class ClassA : IAmA
{
}
public class ClassB : IAmB<ClassA>
{
}
When trying to use these classes as shown:
public class Foo
{
public void Bar()
{
var list = new List<IAmB<IAmA>>();
list.Add(new ClassB());
}
}
I get this compiler error:
cannot convert from 'ClassB' to 'IAmB<IAmA>'
I know I can make the compiler happy using:
public class ClassB : IAmB<IAmA>
{
}
But I need to be able to be the Type parameter for IAmB<>
in ClassB
an implementation of IAmA
.
Upvotes: 6
Views: 343
Reputation: 131364
The quick answer is that you can do what you ask by declaring the type parameter of IAmB<T>
as covariant, only if the type is used as a return type:
public interface IAmB<out T> where T : IAmA
{
T SomeMethod(string someparam);
}
out T
means that you can use a more specific type than then one specified in the constraints.
You won't be able to use T as a parameter. The following won't compile:
public interface IAmB<out T> where T : IAmA
{
void SomeMethod(T someparam);
}
From the documentation
You can use a covariant type parameter as the return value of a method that belongs to an interface, or as the return type of a delegate. You cannot use a covariant type parameter as a generic type constraint for interface methods.
This isn't a compiler quirk.
Assuming you could declare a covariant method parameter, your list would end up containing some objects that couldn't handle an IAmB<IAmA>
parameter - they would expect an input of ClassA or more specific. Your code would compile but fail at runtime.
Which begs the question - why do you want to use IAmB<ClassA>
?
You should think about before using this though, as there may be other, more suitable ways to address your actual problem. It's unusual to use a generic interface implementing a concrete type but trying to use it as if it were implementing another interface.
You can check the MSDN documentation's section on Covariance and Contravariance as well as Eric Lippert's an Jon Skeet's answers to this SO question: Difference between Covariance and Contravariance
Upvotes: 11
Reputation: 23
It can be solved using Contravariance and Covariance.
public interface IAmA
{
}
**public interface IAmB<out T> where T : IAmA
{
}**
public class ClassA : IAmA
{
}
public class ClassB : IAmB<ClassA>
{
}
public class Foo
{
public void Bar()
{
var list = new List<IAmB<IAmA>>();
**list.Add(new ClassB());**
}
}
Now you don't get compiler error. Compiler is happy.
Upvotes: 0
Reputation: 3311
I just tell why this error reported.
if your IAmB
has a method
public interface IAmB<T> where T : IAmA
{
void foo(T p);
}
public class ClassB : IAmB<ClassA>
{
void foo(ClassA p)
{
p.someIntField++;
}
}
and we have another class
public class ClassC : IAmB<ClassA2>
{
void foo(ClassA2 p)
{
p.someOtherIntField++;
}
}
and we assume List<IAmB<IAmA>>.Add(T p)
implement like this
IAmA mParam = xxxx;
void Add(IAmB<IAmA>> p){
p.foo(mParam);
}
thinking all compile OK. you pass a ClassB instance to List.Add
, it becomes
void Add(IAmB<IAmA>> p){
//p is ClassB now
p.foo(mParam);//COMPILER CAN NOT MAKE SURE mParam fit ClassB.foo
}
Upvotes: 0
Reputation: 116458
The trick is making the type constraint T
on IAmB<T>
covariant, with the out
keyword:
public interface IAmB<out T> where T : IAmA
{
}
This allows you to use a more specific type than originally specified, in this case allowing you to assign an IAmB<ClassA>
to a variable of type IAmB<IAmA>
.
For more information, see the documentation.
Upvotes: 2
Reputation: 60493
Fast answer : make the generic type covariant (see msdn) in your interface
public interface IAmB<out T> where T : IAmA
{
}
this will resolve the compiler problem.
But this won't answer the why
asked by Panagiotis Kanavos !
Upvotes: 3