Reputation: 6366
I have the following numpy array:
# A B C Y
my_arr = np.array([ [.20, .54, .26], # <0
[.22, .54, .24], # 1
[.19, .56, .25], # 2
[.19, .58, .23], # 3
[.17, .62, .21] ]) # 4+
if a user enters a y (example, 2.5) I should out put three values, one for A, B, and C:
in my example A: .19, B: .57, C: .24
More Examples:
Y A B C
0.2 .20 .54 .26
1.5 .215 .55 .245
4.0 .17 .62 .21
8.7 .17 .62 .21
The user will enter a multiple of y values as a numpy array. the result should be an array as well
I've done bits and pieces of the code for example
#boundaries:
y[y < 0] = 0
y[y > 4] = 4
I'm also assuming that scipy.ndimage / map_coordinates will best fit my requirements rather than scipy.interpolate but I could be wrong
Upvotes: 2
Views: 6236
Reputation: 27613
from scipy import array, ndimage
# A B C Y
m = array([ [.20, .54, .26], # 0
[.22, .54, .24], # 1
[.19, .56, .25], # 2
[.19, .58, .23], # 3
[.17, .62, .21] ]) # 4
inputs = array([-1, 0, 0.2, 1, 1.5, 2, 2.5, 3, 4, 8.7])
inputs[inputs < 0] = 0
inputs[inputs > 4] = 4
for y in inputs:
x = ndimage.map_coordinates(m, [y * numpy.ones(3), numpy.arange(3)], order=1)
print y, x
>>>
0.0 [ 0.2 0.54 0.26]
0.0 [ 0.2 0.54 0.26]
0.2 [ 0.204 0.54 0.256]
1.0 [ 0.22 0.54 0.24]
1.5 [ 0.205 0.55 0.245]
2.0 [ 0.19 0.56 0.25]
2.5 [ 0.19 0.57 0.24]
3.0 [ 0.19 0.58 0.23]
4.0 [ 0.17 0.62 0.21]
4.0 [ 0.17 0.62 0.21]
Upvotes: 6
Reputation: 880877
There might be a better way using scipy.ndimage, but here is how you could do it with scipy.interpolate.interp1d:
import numpy as np
import scipy.interpolate as spi
# A B C Y
my_arr = np.array([ [.20, .54, .26], # 0
[.22, .54, .24], # 1
[.19, .56, .25], # 2
[.19, .58, .23], # 3
[.17, .62, .21] ])
print(my_arr)
Y=np.arange(len(my_arr))
interp_funcs=[spi.interp1d(Y,my_arr[:,col]) for col in range(3)]
y=np.array([2.5,0.2,1.5,4.0,8.7])
y[y < 0] = 0
y[y > 4] = 4
print(np.vstack(f(y) for f in interp_funcs))
# [[ 0.19 0.204 0.205 0.17 0.17 ]
# [ 0.57 0.54 0.55 0.62 0.62 ]
# [ 0.24 0.256 0.245 0.21 0.21 ]]
Upvotes: 2