Reputation:
I'm trying to create a function that will give me the value of a matrix once it has been raised to a power. This is what I've done so far:
A <- matrix(c(1,2,3,4,0,1,2,3,0,0,1,2,0,0,0,1),nrow=4,ncol=4)
power <- function(A,n){
+ if(n == 0){
+ return(diag(4))
+ }else{
+ return(A%*%A^(n-1))
+ }
+ }
OUTCOME:
> power(A,4)
[,1] [,2] [,3] [,4]
[1,] 1 0 0 0
[2,] 10 1 0 0
[3,] 46 10 1 0
[4,] 146 46 10 1
This is giving a different value from what my calculator gets and I'm trying to figure what I'm doing wrong. Any help is appreciated!
Upvotes: 2
Views: 882
Reputation: 521194
You have a problem with the way you are computing your matrix product. I use a while loop inside your power()
function instead. It simply multiples the input matrix against itself n
times and then returns the result. Here is a base R solution which is a continuation of the direction in which you were already going.
A <- matrix(c(1,2,3,4,0,1,2,3,0,0,1,2,0,0,0,1),nrow=4,ncol=4)
power <- function(A,n){
B <- diag(nrow(A))
if (n == 0) {
return(diag(nrow(A)))
} else {
while (n > 0) {
B <- A%*%B
n <- n - 1
}
return(B)
}
}
> power(A, 4)
[,1] [,2] [,3] [,4]
[1,] 1 0 0 0
[2,] 8 1 0 0
[3,] 36 8 1 0
[4,] 120 36 8 1
Upvotes: 1
Reputation: 887108
We could use %^%
from library(expm)
library(expm)
A%*%(A%^%3)
Using this in a function
power <- function(A,n){
if(n == 0){
return(diag(4))
}else{
return(A%*%(A%^%(n-1)))
}
}
power(A,4)
# [,1] [,2] [,3] [,4]
#[1,] 1 0 0 0
#[2,] 8 1 0 0
#[3,] 36 8 1 0
#[4,] 120 36 8 1
According to the description in ?matpow
Compute the k-th power of a matrix. Whereas ‘x^k’ computes element wise powers, ‘x %^% k’ corresponds to k - 1 matrix multiplications, ‘x %% x %% ... %*% x’.
Or a base R
option is Reduce
with %*%
(but this would be slow compared to %^%
.
Reduce(`%*%`,replicate(4, A, simplify=FALSE))
In a function,
power1 <- function(A,n){
if(n == 0){
return(diag(4))
}else{
Reduce(`%*%`,replicate(n, A, simplify=FALSE))
}
}
power1(A,4)
# [,1] [,2] [,3] [,4]
#[1,] 1 0 0 0
#[2,] 8 1 0 0
#[3,] 36 8 1 0
#[4,] 120 36 8 1
Upvotes: 3
Reputation: 45
I assume you want to make the muliplication of the matrix.You have to first make the multiply the matrix and then try to multiply them using the same powers as you want ,so you can do two things
Upvotes: 0