Reputation: 1231
Consider a function f
of two arguments x
and a
. First I take integration of f
with respect to x
, which becomes a function g
of a
. Second, I want to find the root of the resulting function g
of a
. Can I do this using uniroot
and integrate
in R
? If so, how? If not, is there a way to do this at all? Thanks.
b <- 2
truncfn <- function(x) pmin(b, pmax(x, -b))
# thetashape and thetascale are constants
# x and a are arguments
f <- function(x, thetashape, thetascale, a){
term1 <- -1/thetascale
term2 <- (1-thetashape)/thetascale
term3 <- x/(thetascale-thetashape*x)
term1 + term2*term3 - a
}
# First, integrate f with respect to x
g <- integrate(truncfn(f), lower=0, upper=Inf)
# Second, find root of g
uniroot(g, ...)
Upvotes: 0
Views: 1362
Reputation: 44330
You can define a function (I call it truncfn2
) that calls truncfn
on the result of the call to f
, and then g
integrates truncfn2
. Finally uniroot
searches for the root of g
:
b <- 2
truncfn <- function(x) pmin(b, pmax(x, -b))
# thetashape and thetascale are constants
# x and a are arguments
f <- function(x, thetashape, thetascale, a){
term1 <- -1/thetascale
term2 <- (1-thetashape)/thetascale
term3 <- x/(thetascale-thetashape*x)
term1 + term2*term3 - a
}
truncfn2 <- function(x, thetashape, thetascale, a) truncfn(f(x, thetashape, thetascale, a))
g <- function(a) integrate(truncfn2, thetascale=1, thetashape=0.6, a=a, lower=0, upper=10)$value
uniroot(g, lower=-10, upper=10)
# $root
# [1] -1.867932
#
# $f.root
# [1] 1.134733e-07
#
# $iter
# [1] 7
#
# $init.it
# [1] NA
#
# $estim.prec
# [1] 6.103516e-05
Upvotes: 2