Reputation: 1462
I have written a function with 3 nested foreach loops, running in parallel. The goal of the function is to split a list of 30 [10,5] matrices (i.e. [[30]][10,5]
) into a list of 5 [10,30] matrices (i.e. [[5]][10,30]
).
However, I am trying to run this function with 1,000,000 paths (i.e. foreach (m = 1:1000000)
), and obviously, the performance is terrible.
I'd like to avoid apply functions if possible because I've found that they don't work well when used in conjunction with parallel foreach loops:
library(foreach)
library(doParallel)
# input matr: a list of 30 [10,5] matrices
matrix_splitter <- function(matr) {
time_horizon <- 30
paths <- 10
asset <- 5
security_paths <- foreach(i = 1:asset, .combine = rbind, .packages = "doParallel", .export = "daily") %dopar% {
foreach(m = 1:paths, .combine = rbind, .packages = "doParallel", .export = "daily") %dopar% {
foreach(p = daily, .combine = c) %dopar% {
p[m,i]
}
}
}
df_securities <- as.data.frame(security_paths)
split(df_securities, sample(rep(1:paths), asset))
}
Overall, I'm trying to convert this data format:
[[30]]
[,1] [,2] [,3] [,4] [,5]
[1,] 0.2800977 2.06715521 0.9196326 0.3560659 1.36126507
[2,] -0.5119867 0.24329025 0.1513218 -1.2528092 -0.04795098
[3,] -2.0293933 -1.17989270 0.3053376 -0.9528611 0.86758140
[4,] -0.6419024 -0.24846720 -0.6640066 -1.7104961 -0.32759406
[5,] -0.4340359 -0.44034013 3.3440507 0.7380613 2.01237069
[6,] -0.6679914 -0.01332117 1.9286056 -0.7194116 0.15549978
[7,] 0.5919820 0.11616685 -0.8424634 -0.7652715 1.34176688
[8,] 0.8079152 0.40592119 -0.4291811 0.9358829 -0.97479314
[9,] -0.0265207 -0.03598320 1.1287344 0.4732984 1.37792596
[10,] 1.0553966 0.65776721 -1.2833613 -0.2414846 0.81528686
To this format (obviously up to V30):
$`5`
V1 V2 V3 V4 V5 V6 V7
result.2 -0.11822260 1.7712833 1.97737285 -1.6643193 0.4788075 1.2394064 1.4800787
result.7 -1.23251178 0.4267885 -0.07728632 0.3463092 0.8766395 0.6324840 0.5946710
result.2.1 -1.27309457 -0.3128173 -0.79561297 -0.4713307 -0.4344864 0.4688124 -0.5646857
result.7.1 0.51702719 -1.6242650 -2.37976199 -0.1088408 0.4846507 -0.7594376 0.9326529
result.2.2 1.77550390 0.9279155 0.26168402 0.4893835 1.4131326 0.5989508 -0.3434010
result.7.2 -0.01590682 -0.5568578 1.35789122 -0.1385092 -0.4501515 -0.2581724 0.5451699
result.2.3 0.30400225 -1.0245640 -0.05285694 -0.1354228 0.3070331 -0.7618850 1.0330961
result.7.3 -0.08139912 0.4106541 1.40418839 0.2471505 1.2106539 1.3844721 0.4006751
result.2.4 0.94977544 -0.8045054 1.48791211 1.4361686 -0.3789274 -1.9570125 -1.6576634
result.7.4 0.70449194 1.6887800 0.56447340 0.6465640 2.6865388 -0.7367524 0.6242624
V8 V9 V10 V11 V12 V13
result.2 -0.432404728 -1.6225350 0.09855465 0.17371907 0.3081843 0.15148452
result.7 -0.597420706 0.6173004 0.07518596 2.01741406 0.1767152 -0.39219471
result.2.1 0.918408322 -1.6896424 -0.13409626 0.38674224 0.3491750 -1.61083286
result.7.1 2.564057340 -0.7696399 1.06103614 1.38528367 1.1684045 -0.08467871
result.2.2 0.951995816 0.1910284 1.79943500 2.13909498 0.2847664 0.31094568
result.7.2 -0.479349220 -0.2368760 0.04298525 -0.40385960 0.3986555 -1.93499213
result.2.3 -1.382370069 1.0459845 -0.33106323 -0.43362925 0.7045572 -0.30211601
result.7.3 -1.457106442 0.1487447 -2.52392942 -0.02399523 -1.0349746 0.87666365
result.2.4 -0.848879365 0.7521024 0.16790915 0.47112444 0.8886361 -0.12733039
result.7.4 -0.003350467 0.4021858 -1.80031445 -1.42399232 1.0507765 -0.36193846
Upvotes: 2
Views: 422
Reputation: 31171
The package plyr
is designed for this problem thanks to alply
. The idea is: unlist your list, fromat it in the appropriate way in an array, and convert this array to a list of matrix using alply
.
Example of transformation of a list of 2
matrix 3x5
to a list of 5
matrix 2x3
:
library(plyr)
lst = list(matrix(1:15, ncol=5), matrix(10:24, ncol=5))
alply(array(unlist(lst), c(2,3,5)),3)
#$`1`
# [,1] [,2] [,3]
#[1,] 1 3 5
#[2,] 2 4 6
#$`2`
# [,1] [,2] [,3]
#[1,] 7 9 11
#[2,] 8 10 12
#$`3`
# [,1] [,2] [,3]
#[1,] 13 15 11
#[2,] 14 10 12
#$`4`
# [,1] [,2] [,3]
#[1,] 13 15 17
#[2,] 14 16 18
#$`5`
# [,1] [,2] [,3]
#[1,] 19 21 23
#[2,] 20 22 24
Upvotes: 1
Reputation: 584
I would convert all of your list into a great big vector, and then re-dimension it.
For my solution, I started with:
[[28]]
[,1] [,2] [,3] [,4] [,5]
[1,] 1 11 21 31 41
[2,] 2 12 22 32 42
[3,] 3 13 23 33 43
[4,] 4 14 24 34 44
[5,] 5 15 25 35 45
[6,] 6 16 26 36 46
[7,] 7 17 27 37 47
[8,] 8 18 28 38 48
[9,] 9 19 29 39 49
[10,] 10 20 30 40 50
Repeated thirty times. This is the variable orig
. My code:
flattened.vec <- unlist(orig) #flatten the list of matrices into one big vector
dim(flattened.vec) <-c(10,150) #need to rearrange the vector so the re-shape comes out right
transposed.matrix <- t(flattened.vec) #transposing to make sure right elements go to the right place
new.matrix.list <- split(transposed.matrix,cut(seq_along(transposed.matrix)%%5, 10, labels = FALSE)) #split the big, transposed matrix into 5 10x30 matrices
This code gives you 5 vectors, that you need to dim(10,30)
and then use t()
on them in a foreach to get 5 30X10 vectors (I would normally use an apply
function, and am not familiar with the foreach
library).
End result for one of the 5 matrices result after doing so:
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14] [,15] [,16] [,17]
[1,] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[2,] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[3,] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
[4,] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
[5,] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
[6,] 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
[7,] 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
[8,] 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
[9,] 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
[10,] 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
[,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [,26] [,27] [,28] [,29] [,30]
[1,] 1 1 1 1 1 1 1 1 1 1 1 1 1
[2,] 2 2 2 2 2 2 2 2 2 2 2 2 2
[3,] 3 3 3 3 3 3 3 3 3 3 3 3 3
[4,] 4 4 4 4 4 4 4 4 4 4 4 4 4
[5,] 5 5 5 5 5 5 5 5 5 5 5 5 5
[6,] 6 6 6 6 6 6 6 6 6 6 6 6 6
[7,] 7 7 7 7 7 7 7 7 7 7 7 7 7
[8,] 8 8 8 8 8 8 8 8 8 8 8 8 8
[9,] 9 9 9 9 9 9 9 9 9 9 9 9 9
[10,] 10 10 10 10 10 10 10 10 10 10 10 10 10
Incidentally, this is probably what the plyr
package does on its own already (as posted by Colonel Beauvel), just manually instead of using an external library
Upvotes: 0
Reputation: 2502
I believe you are looking for the answer to this: Function to split a matrix into sub-matrices in R
You would just use do.call(rbind, matlist)
as an input to those functions.
Upvotes: 0