Reputation: 31
I am designing a thread pool with following features.
Here is the code:
unit ThreadUtilities;
interface
uses
Windows, SysUtils, Classes;
type
EThreadStackFinalized = class(Exception);
TSimpleThread = class;
// Thread Safe Pointer Queue
TThreadQueue = class
private
FFinalized: Boolean;
FIOQueue: THandle;
public
constructor Create;
destructor Destroy; override;
procedure Finalize;
procedure Push(Data: Pointer);
function Pop(var Data: Pointer): Boolean;
property Finalized: Boolean read FFinalized;
end;
TThreadExecuteEvent = procedure (Thread: TThread) of object;
TSimpleThread = class(TThread)
private
FExecuteEvent: TThreadExecuteEvent;
protected
procedure Execute(); override;
public
constructor Create(CreateSuspended: Boolean; ExecuteEvent: TThreadExecuteEvent; AFreeOnTerminate: Boolean);
end;
TThreadPoolEvent = procedure (Data: Pointer; AThread: TThread) of Object;
TThreadPool = class(TObject)
private
FThreads: TList;
fis32MaxThreadCount : Integer;
FThreadQueue: TThreadQueue;
FHandlePoolEvent: TThreadPoolEvent;
procedure DoHandleThreadExecute(Thread: TThread);
procedure SetMaxThreadCount(const pis32MaxThreadCount : Integer);
function GetMaxThreadCount : Integer;
public
constructor Create( HandlePoolEvent: TThreadPoolEvent; MaxThreads: Integer = 1); virtual;
destructor Destroy; override;
procedure Add(const Data: Pointer);
property MaxThreadCount : Integer read GetMaxThreadCount write SetMaxThreadCount;
end;
implementation
constructor TThreadQueue.Create;
begin
//-- Create IO Completion Queue
FIOQueue := CreateIOCompletionPort(INVALID_HANDLE_VALUE, 0, 0, 0);
FFinalized := False;
end;
destructor TThreadQueue.Destroy;
begin
//-- Destroy Completion Queue
if (FIOQueue = 0) then
CloseHandle(FIOQueue);
inherited;
end;
procedure TThreadQueue.Finalize;
begin
//-- Post a finialize pointer on to the queue
PostQueuedCompletionStatus(FIOQueue, 0, 0, Pointer($FFFFFFFF));
FFinalized := True;
end;
function TThreadQueue.Pop(var Data: Pointer): Boolean;
var
A: Cardinal;
OL: POverLapped;
begin
Result := True;
if (not FFinalized) then
//-- Remove/Pop the first pointer from the queue or wait
GetQueuedCompletionStatus(FIOQueue, A, Cardinal(Data), OL, INFINITE);
//-- Check if we have finalized the queue for completion
if FFinalized or (OL = Pointer($FFFFFFFF)) then begin
Data := nil;
Result := False;
Finalize;
end;
end;
procedure TThreadQueue.Push(Data: Pointer);
begin
if FFinalized then
Raise EThreadStackFinalized.Create('Stack is finalized');
//-- Add/Push a pointer on to the end of the queue
PostQueuedCompletionStatus(FIOQueue, 0, Cardinal(Data), nil);
end;
{ TSimpleThread }
constructor TSimpleThread.Create(CreateSuspended: Boolean;
ExecuteEvent: TThreadExecuteEvent; AFreeOnTerminate: Boolean);
begin
FreeOnTerminate := AFreeOnTerminate;
FExecuteEvent := ExecuteEvent;
inherited Create(CreateSuspended);
end;
Changed the code as suggested by J... also added critical sections but the problem i am facing now is that when i am trying call multiple task only one thread is being used, Lets say if i added 5 threads in the pool then only one thread is being used which is thread 1. Please check my client code as well in the below section.
procedure TSimpleThread.Execute;
begin
// if Assigned(FExecuteEvent) then
// FExecuteEvent(Self);
while not self.Terminated do begin
try
// FGoEvent.WaitFor(INFINITE);
// FGoEvent.ResetEvent;
EnterCriticalSection(csCriticalSection);
if self.Terminated then break;
if Assigned(FExecuteEvent) then
FExecuteEvent(Self);
finally
LeaveCriticalSection(csCriticalSection);
// HandleException;
end;
end;
end;
In the Add
method, how can I check if there is any thread which is not busy, if it is not busy then reuse it else create a new thread and add it in ThreadPool list?
{ TThreadPool }
procedure TThreadPool.Add(const Data: Pointer);
begin
FThreadQueue.Push(Data);
// if FThreads.Count < MaxThreadCount then
// begin
// FThreads.Add(TSimpleThread.Create(False, DoHandleThreadExecute, False));
// end;
end;
constructor TThreadPool.Create(HandlePoolEvent: TThreadPoolEvent;
MaxThreads: Integer);
begin
FHandlePoolEvent := HandlePoolEvent;
FThreadQueue := TThreadQueue.Create;
FThreads := TList.Create;
FThreads.Add(TSimpleThread.Create(False, DoHandleThreadExecute, False));
end;
destructor TThreadPool.Destroy;
var
t: Integer;
begin
FThreadQueue.Finalize;
for t := 0 to FThreads.Count-1 do
TThread(FThreads[t]).Terminate;
while (FThreads.Count = 0) do begin
TThread(FThreads[0]).WaitFor;
TThread(FThreads[0]).Free;
FThreads.Delete(0);
end;
FThreadQueue.Free;
FThreads.Free;
inherited;
end;
procedure TThreadPool.DoHandleThreadExecute(Thread: TThread);
var
Data: Pointer;
begin
while FThreadQueue.Pop(Data) and (not TSimpleThread(Thread).Terminated) do begin
try
FHandlePoolEvent(Data, Thread);
except
end;
end;
end;
function TThreadPool.GetMaxThreadCount: Integer;
begin
Result := fis32MaxThreadCount;
end;
procedure TThreadPool.SetMaxThreadCount(const pis32MaxThreadCount: Integer);
begin
fis32MaxThreadCount := pis32MaxThreadCount;
end;
end.
Client Code : This the client i created to log the data in text file : unit ThreadClient;
interface
uses Windows, SysUtils, Classes, ThreadUtilities;
type
PLogRequest = ^TLogRequest;
TLogRequest = record
LogText: String;
end;
TThreadFileLog = class(TObject)
private
FFileName: String;
FThreadPool: TThreadPool;
procedure HandleLogRequest(Data: Pointer; AThread: TThread);
public
constructor Create(const FileName: string);
destructor Destroy; override;
procedure Log(const LogText: string);
procedure SetMaxThreadCount(const pis32MaxThreadCnt : Integer);
end;
implementation
(* Simple reuse of a logtofile function for example *)
procedure LogToFile(const FileName, LogString: String);
var
F: TextFile;
begin
AssignFile(F, FileName);
if not FileExists(FileName) then
Rewrite(F)
else
Append(F);
try
Writeln(F, DateTimeToStr(Now) + ': ' + LogString);
finally
CloseFile(F);
end;
end;
constructor TThreadFileLog.Create(const FileName: string);
begin
FFileName := FileName;
//-- Pool of one thread to handle queue of logs
FThreadPool := TThreadPool.Create(HandleLogRequest, 5);
end;
destructor TThreadFileLog.Destroy;
begin
FThreadPool.Free;
inherited;
end;
procedure TThreadFileLog.HandleLogRequest(Data: Pointer; AThread: TThread);
var
Request: PLogRequest;
los32Idx : Integer;
begin
Request := Data;
try
for los32Idx := 0 to 100 do
begin
LogToFile(FFileName, IntToStr( AThread.ThreadID) + Request^.LogText);
end;
finally
Dispose(Request);
end;
end;
procedure TThreadFileLog.Log(const LogText: string);
var
Request: PLogRequest;
begin
New(Request);
Request^.LogText := LogText;
FThreadPool.Add(Request);
end;
procedure TThreadFileLog.SetMaxThreadCount(const pis32MaxThreadCnt: Integer);
begin
FThreadPool.MaxThreadCount := pis32MaxThreadCnt;
end;
end.
This is the form application where i added three buttons, each button click will write some value to the file with thread id and text msg. But the problem is thread id is always same
unit ThreadPool;
interface
uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, ThreadClient;
type
TForm5 = class(TForm)
Button1: TButton;
Button2: TButton;
Button3: TButton;
Edit1: TEdit;
procedure Button1Click(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure Button2Click(Sender: TObject);
procedure Button3Click(Sender: TObject);
procedure Edit1Change(Sender: TObject);
private
{ Private declarations }
fiFileLog : TThreadFileLog;
public
{ Public declarations }
end;
var
Form5: TForm5;
implementation
{$R *.dfm}
procedure TForm5.Button1Click(Sender: TObject);
begin
fiFileLog.Log('Button one click');
end;
procedure TForm5.Button2Click(Sender: TObject);
begin
fiFileLog.Log('Button two click');
end;
procedure TForm5.Button3Click(Sender: TObject);
begin
fiFileLog.Log('Button three click');
end;
procedure TForm5.Edit1Change(Sender: TObject);
begin
fiFileLog.SetMaxThreadCount(StrToInt(Edit1.Text));
end;
procedure TForm5.FormCreate(Sender: TObject);
begin
fiFileLog := TThreadFileLog.Create('C:/test123.txt');
end;
end.
Upvotes: 1
Views: 2518
Reputation: 31393
First, and probably most strongly advisable, you might consider using a library like OmniThread to implement a threadpool. The hard work is done for you and you will likely end up making a substandard and buggy product with a roll-your-own solution. Unless you have special requirements this is probably the fastest and easiest solution.
That said, if you want to try to do this...
What you might consider is to just make all of the threads in your pool at startup rather than on-demand. If the server is going to busy at any point then it will eventually end up with a pool of MaxThreadCount
soon enough anyway.
In any case, if you want to keep a pool of threads alive and available for work then they would need to follow a slightly different model than what you have written.
Consider:
procedure TSimpleThread.Execute;
begin
if Assigned(FExecuteEvent) then
FExecuteEvent(Self);
end;
Here when you run your thread it will execute this callback and then terminate. This doesn't seem to be what you want. What you seem to want is to keep the thread alive but waiting for its next work package. I use a base thread class (for pools) with an execute method that looks something like this (this is somewhat simplified):
procedure TMyCustomThread.Execute;
begin
while not self.Terminated do begin
try
FGoEvent.WaitFor(INFINITE);
FGoEvent.ResetEvent;
if self.Terminated then break;
MainExecute;
except
HandleException;
end;
end;
end;
Here FGoEvent
is a TEvent
. The implementing class defines what the work package looks like in the abstract MainExecute
method, but whatever it is the thread will perform its work and then return to waiting for the FGoEvent
to signal that it has new work to do.
In your case, you need to keep track of which threads are waiting and which are working. You will probably want a manager class of some sort to keep track of these thread objects. Assigning something simple like a threadID to each one seems sensible. For each thread, just before launching it, make a record that it is currently busy. At the very end of your work package you can then post a message back to the manager class telling it that the work is done (and that it can flag the thread as available for work).
When you add work to the queue you can first check for available threads to run the work (or create a new one if you wish to follow the model you outlined). If there are threads then launch the task, if there are not then push the work onto the work queue. When worker threads report complete the manager can check the queue for outstanding work. If there is work it can immediately re-deploy the thread. If there isn't work it can flag the thread as available for work (here you might use a second queue for available workers).
A full implementation is too complex to document in a single answer here - this aims just to rough out some general ideas.
Upvotes: 2