Reputation: 2385
When running the code below I am not able to give colors to the text in geom_text
. Does anyone see where the error is? It workes in my other data.
ggplot(TumorNormalmiR148a_3p.m3, aes(X2,value)) +
geom_dotplot(aes(fill=Sample),binaxis = "y") + coord_flip() +
theme_bw(base_size=8) +
theme(axis.text.y=element_text(hjust = 0)) +
geom_text(aes(x, y, label=FDR, colour=coloursmir148a),data=pvaluesmir148acombined,size=2, show_guide=F) +
scale_color_manual(values=coloursmir148a) +
labs(y="log2 RPM", x="IsomiRs (hsa-miR-148a-5p)")
colors:
> coloursmir148a
[1] "black" "black" "red" "red" "red" "red" "red" "black" "red" "red" "red" "black" "red" "red"
[15] "black" "black" "black" "black" "red" "red" "red" "red" "red" "red" "black" "red" "red" "black"
[29] "red" "black" "red" "red" "red" "black"
pvalues:
> pvaluesmir148acombined
FDR x y
1 p = 8.7e-02 1 13
2 p = 6.2e-02 2 13
3 p = 3.5e-05 3 13
4 p = 2.8e-04 4 13
5 p = 2.6e-05 5 13
6 p = 5.1e-07 6 13
7 p = 8.4e-07 7 13
8 p = 6.3e-01 8 13
9 p = 5.5e-03 9 13
10 p = 8.9e-06 10 13
11 p = 3.4e-07 11 13
12 p = 1.1e-01 12 13
13 p = 1.6e-03 13 13
14 p = 1.6e-03 14 13
15 p = 5.4e-02 15 13
16 p = 1.2e-01 16 13
17 p = 7.1e-02 17 13
18 p = 3.3e-01 18 13
19 p = 6.4e-03 19 13
20 p = 2.3e-04 20 13
21 p = 3.8e-02 21 13
22 p = 8.3e-04 22 13
23 p = 2.1e-03 23 13
24 p = 5.1e-05 24 13
25 p = 1.9e-01 25 13
26 p = 3.7e-03 26 13
27 p = 2.8e-03 27 13
28 p = 4.5e-01 28 13
29 p = 3.8e-04 29 13
30 p = 3.3e-01 30 13
31 p = 8.8e-03 31 13
32 p = 8.4e-04 32 13
33 p = 8.6e-05 33 13
34 p = 9.8e-02 34 13
The data:
> TumorNormalmiR148a_3p.m3
GeneID Sample value X1 X2
1 hsa-miR-148a-3p_AGTGCACTACAGAACTTTGT Normal 0.771999520 hsa-miR-148a-3p AGTGCACTACAGAACTTTGT
2 hsa-miR-148a-3p_CAGTGCACTACAGAACTTTGT Normal 1.287154580 hsa-miR-148a-3p CAGTGCACTACAGAACTTTGT
3 hsa-miR-148a-3p_CAGTGCACTACAGAACTTTGTC Normal 2.187647871 hsa-miR-148a-3p CAGTGCACTACAGAACTTTGTC
4 hsa-miR-148a-3p_TCAGTGCACTACAGAACTT Normal 6.752524925 hsa-miR-148a-3p TCAGTGCACTACAGAACTT
5 hsa-miR-148a-3p_TCAGTGCACTACAGAACTTT Normal 8.442635161 hsa-miR-148a-3p TCAGTGCACTACAGAACTTT
6 hsa-miR-148a-3p_TCAGTGCACTACAGAACTTTA Normal 2.173341120 hsa-miR-148a-3p TCAGTGCACTACAGAACTTTA
7 hsa-miR-148a-3p_TCAGTGCACTACAGAACTTTAA Normal 2.926393331 hsa-miR-148a-3p TCAGTGCACTACAGAACTTTAA
8 hsa-miR-148a-3p_TCAGTGCACTACAGAACTTTAT Normal 1.449873411 hsa-miR-148a-3p TCAGTGCACTACAGAACTTTAT
9 hsa-miR-148a-3p_TCAGTGCACTACAGAACTTTG Normal 9.853894140 hsa-miR-148a-3p TCAGTGCACTACAGAACTTTG
10 hsa-miR-148a-3p_TCAGTGCACTACAGAACTTTGA Normal 9.397111369 hsa-miR-148a-3p TCAGTGCACTACAGAACTTTGA
11 hsa-miR-148a-3p_TCAGTGCACTACAGAACTTTGAA Normal 4.305334683 hsa-miR-148a-3p TCAGTGCACTACAGAACTTTGAA
12 hsa-miR-148a-3p_TCAGTGCACTACAGAACTTTGAAA Normal 1.084027377 hsa-miR-148a-3p TCAGTGCACTACAGAACTTTGAAA
13 hsa-miR-148a-3p_TCAGTGCACTACAGAACTTTGAC Normal 0.004323489 hsa-miR-148a-3p TCAGTGCACTACAGAACTTTGAC
14 hsa-miR-148a-3p_TCAGTGCACTACAGAACTTTGAT Normal 1.792349294 hsa-miR-148a-3p TCAGTGCACTACAGAACTTTGAT
15 hsa-miR-148a-3p_TCAGTGCACTACAGAACTTTGC Normal 3.622005753 hsa-miR-148a-3p TCAGTGCACTACAGAACTTTGC
16 hsa-miR-148a-3p_TCAGTGCACTACAGAACTTTGG Normal 2.428371837 hsa-miR-148a-3p TCAGTGCACTACAGAACTTTGG
17 hsa-miR-148a-3p_TCAGTGCACTACAGAACTTTGT Normal 13.315790055 hsa-miR-148a-3p TCAGTGCACTACAGAACTTTGT
18 hsa-miR-148a-3p_TCAGTGCACTACAGAACTTTGTA Normal 7.118488238 hsa-miR-148a-3p TCAGTGCACTACAGAACTTTGTA
19 hsa-miR-148a-3p_TCAGTGCACTACAGAACTTTGTAA Normal 4.771188637 hsa-miR-148a-3p TCAGTGCACTACAGAACTTTGTAA
20 hsa-miR-148a-3p_TCAGTGCACTACAGAACTTTGTAAA Normal 0.263900902 hsa-miR-148a-3p TCAGTGCACTACAGAACTTTGTAAA
21 hsa-miR-148a-3p_TCAGTGCACTACAGAACTTTGTAT Normal 2.554341244 hsa-miR-148a-3p TCAGTGCACTACAGAACTTTGTAT
22 hsa-miR-148a-3p_TCAGTGCACTACAGAACTTTGTC Normal 12.443752172 hsa-miR-148a-3p TCAGTGCACTACAGAACTTTGTC
23 hsa-miR-148a-3p_TCAGTGCACTACAGAACTTTGTCA Normal 5.457857372 hsa-miR-148a-3p TCAGTGCACTACAGAACTTTGTCA
24 hsa-miR-148a-3p_TCAGTGCACTACAGAACTTTGTCC Normal 1.136643196 hsa-miR-148a-3p TCAGTGCACTACAGAACTTTGTCC
25 hsa-miR-148a-3p_TCAGTGCACTACAGAACTTTGTCG Normal 1.351033273 hsa-miR-148a-3p TCAGTGCACTACAGAACTTTGTCG
26 hsa-miR-148a-3p_TCAGTGCACTACAGAACTTTGTCT Normal 9.005237355 hsa-miR-148a-3p TCAGTGCACTACAGAACTTTGTCT
27 hsa-miR-148a-3p_TCAGTGCACTACAGAACTTTGTCTT Normal 0.962934496 hsa-miR-148a-3p TCAGTGCACTACAGAACTTTGTCTT
28 hsa-miR-148a-3p_TCAGTGCACTACAGAACTTTGTT Normal 8.760597462 hsa-miR-148a-3p TCAGTGCACTACAGAACTTTGTT
29 hsa-miR-148a-3p_TCAGTGCACTACAGAACTTTGTTA Normal 4.804634779 hsa-miR-148a-3p TCAGTGCACTACAGAACTTTGTTA
30 hsa-miR-148a-3p_TCAGTGCACTACAGAACTTTGTTG Normal 0.411903244 hsa-miR-148a-3p TCAGTGCACTACAGAACTTTGTTG
31 hsa-miR-148a-3p_TCAGTGCACTACAGAACTTTGTTT Normal 7.974917053 hsa-miR-148a-3p TCAGTGCACTACAGAACTTTGTTT
32 hsa-miR-148a-3p_TCAGTGCACTACAGAACTTTGTTTT Normal 2.561256273 hsa-miR-148a-3p TCAGTGCACTACAGAACTTTGTTTT
33 hsa-miR-148a-3p_TCAGTGCACTACAGAACTTTT Normal 2.257174177 hsa-miR-148a-3p TCAGTGCACTACAGAACTTTT
34 hsa-miR-148a-3p_TCAGTGCACTACAGAACTTTTT Normal 1.061006153 hsa-miR-148a-3p TCAGTGCACTACAGAACTTTTT
35 hsa-miR-148a-3p_AGTGCACTACAGAACTTTGT Tumor 1.310698364 hsa-miR-148a-3p AGTGCACTACAGAACTTTGT
36 hsa-miR-148a-3p_CAGTGCACTACAGAACTTTGT Tumor 1.937236644 hsa-miR-148a-3p CAGTGCACTACAGAACTTTGT
37 hsa-miR-148a-3p_CAGTGCACTACAGAACTTTGTC Tumor 3.325631898 hsa-miR-148a-3p CAGTGCACTACAGAACTTTGTC
38 hsa-miR-148a-3p_TCAGTGCACTACAGAACTT Tumor 6.068923394 hsa-miR-148a-3p TCAGTGCACTACAGAACTT
39 hsa-miR-148a-3p_TCAGTGCACTACAGAACTTT Tumor 7.518270841 hsa-miR-148a-3p TCAGTGCACTACAGAACTTT
40 hsa-miR-148a-3p_TCAGTGCACTACAGAACTTTA Tumor 1.182664552 hsa-miR-148a-3p TCAGTGCACTACAGAACTTTA
41 hsa-miR-148a-3p_TCAGTGCACTACAGAACTTTAA Tumor 2.124052190 hsa-miR-148a-3p TCAGTGCACTACAGAACTTTAA
42 hsa-miR-148a-3p_TCAGTGCACTACAGAACTTTAT Tumor 1.748184901 hsa-miR-148a-3p TCAGTGCACTACAGAACTTTAT
43 hsa-miR-148a-3p_TCAGTGCACTACAGAACTTTG Tumor 9.377855816 hsa-miR-148a-3p TCAGTGCACTACAGAACTTTG
44 hsa-miR-148a-3p_TCAGTGCACTACAGAACTTTGA Tumor 8.663287427 hsa-miR-148a-3p TCAGTGCACTACAGAACTTTGA
45 hsa-miR-148a-3p_TCAGTGCACTACAGAACTTTGAA Tumor 3.487867176 hsa-miR-148a-3p TCAGTGCACTACAGAACTTTGAA
46 hsa-miR-148a-3p_TCAGTGCACTACAGAACTTTGAAA Tumor 0.726020881 hsa-miR-148a-3p TCAGTGCACTACAGAACTTTGAAA
47 hsa-miR-148a-3p_TCAGTGCACTACAGAACTTTGAC Tumor 0.927396886 hsa-miR-148a-3p TCAGTGCACTACAGAACTTTGAC
48 hsa-miR-148a-3p_TCAGTGCACTACAGAACTTTGAT Tumor 1.241343458 hsa-miR-148a-3p TCAGTGCACTACAGAACTTTGAT
49 hsa-miR-148a-3p_TCAGTGCACTACAGAACTTTGC Tumor 4.258175322 hsa-miR-148a-3p TCAGTGCACTACAGAACTTTGC
50 hsa-miR-148a-3p_TCAGTGCACTACAGAACTTTGG Tumor 3.016538579 hsa-miR-148a-3p TCAGTGCACTACAGAACTTTGG
51 hsa-miR-148a-3p_TCAGTGCACTACAGAACTTTGT Tumor 13.802813336 hsa-miR-148a-3p TCAGTGCACTACAGAACTTTGT
52 hsa-miR-148a-3p_TCAGTGCACTACAGAACTTTGTA Tumor 7.540749259 hsa-miR-148a-3p TCAGTGCACTACAGAACTTTGTA
53 hsa-miR-148a-3p_TCAGTGCACTACAGAACTTTGTAA Tumor 5.609024723 hsa-miR-148a-3p TCAGTGCACTACAGAACTTTGTAA
54 hsa-miR-148a-3p_TCAGTGCACTACAGAACTTTGTAAA Tumor 1.410504309 hsa-miR-148a-3p TCAGTGCACTACAGAACTTTGTAAA
55 hsa-miR-148a-3p_TCAGTGCACTACAGAACTTTGTAT Tumor 3.190967221 hsa-miR-148a-3p TCAGTGCACTACAGAACTTTGTAT
56 hsa-miR-148a-3p_TCAGTGCACTACAGAACTTTGTC Tumor 13.298492973 hsa-miR-148a-3p TCAGTGCACTACAGAACTTTGTC
57 hsa-miR-148a-3p_TCAGTGCACTACAGAACTTTGTCA Tumor 6.351985283 hsa-miR-148a-3p TCAGTGCACTACAGAACTTTGTCA
58 hsa-miR-148a-3p_TCAGTGCACTACAGAACTTTGTCC Tumor 2.409922139 hsa-miR-148a-3p TCAGTGCACTACAGAACTTTGTCC
59 hsa-miR-148a-3p_TCAGTGCACTACAGAACTTTGTCG Tumor 1.833656206 hsa-miR-148a-3p TCAGTGCACTACAGAACTTTGTCG
60 hsa-miR-148a-3p_TCAGTGCACTACAGAACTTTGTCT Tumor 9.849472676 hsa-miR-148a-3p TCAGTGCACTACAGAACTTTGTCT
61 hsa-miR-148a-3p_TCAGTGCACTACAGAACTTTGTCTT Tumor 1.954490774 hsa-miR-148a-3p TCAGTGCACTACAGAACTTTGTCTT
62 hsa-miR-148a-3p_TCAGTGCACTACAGAACTTTGTT Tumor 9.082469578 hsa-miR-148a-3p TCAGTGCACTACAGAACTTTGTT
63 hsa-miR-148a-3p_TCAGTGCACTACAGAACTTTGTTA Tumor 5.798622044 hsa-miR-148a-3p TCAGTGCACTACAGAACTTTGTTA
64 hsa-miR-148a-3p_TCAGTGCACTACAGAACTTTGTTG Tumor 0.788161684 hsa-miR-148a-3p TCAGTGCACTACAGAACTTTGTTG
65 hsa-miR-148a-3p_TCAGTGCACTACAGAACTTTGTTT Tumor 8.803714361 hsa-miR-148a-3p TCAGTGCACTACAGAACTTTGTTT
66 hsa-miR-148a-3p_TCAGTGCACTACAGAACTTTGTTTT Tumor 3.630516106 hsa-miR-148a-3p TCAGTGCACTACAGAACTTTGTTTT
67 hsa-miR-148a-3p_TCAGTGCACTACAGAACTTTT Tumor 1.347143694 hsa-miR-148a-3p TCAGTGCACTACAGAACTTTT
68 hsa-miR-148a-3p_TCAGTGCACTACAGAACTTTTT Tumor 1.739820923 hsa-miR-148a-3p TCAGTGCACTACAGAACTTTTT
Upvotes: 1
Views: 2759
Reputation: 59335
Looking at your data, it seems like you want the labels to be red if p<0.05
and black otherwise (e.g., significant, not significant). Here's a better way to achieve this result.
[ In what follows I'm calling your main data.frame df
, and the data.frame containing the labels lbls
. You don't need a vector of colors. ]
library(ggplot2)
ggplot(df, aes(X2,value)) +
geom_dotplot(aes(fill=Sample),binaxis = "y") + coord_flip() +
theme_bw(base_size=10) +
theme(axis.text.y=element_text(hjust = 0)) +
geom_text(aes(x, y=max(df$value)+2, label=FDR,
color=ifelse(as.numeric(gsub("p = ","",FDR))<0.05,"sig","not.sig")),
data=lbls,size=2, show_guide=F) +
scale_color_manual(values=c(sig="red",not.sig="black")) +
labs(y="log2 RPM", x="IsomiRs (hsa-miR-148a-5p)")
So in this we extract the p-value from the FDR
column in lbls
using:
as.numeric(gsub("p = ","",FDR)
and set the color aesthetic to "sig"
or "not.sig"
depending on whether the p-value is < 0.05 using:
color=ifelse(as.numeric(gsub("p = ","",FDR))<0.05,"sig","not.sig")
Then we use scale_color_manual(...)
as in the comment, passing a named vector as the values=...
argument:
values=c(sig="red",not.sig="black")
Also, we use max(df$values)+2
for the y-aesthetic in geom_text(...)
so that all the labels are to the right of the right-most points.
Finally, I assume you must have the p-values somewhere else to create the labels, so you could just use that instead of parsing the FDR
column, but I don't have access to that part of your dataset.
Upvotes: 5