Reputation: 715
For example, x = np.random.randint(low=0, high=10, shape=(6,6))
gives me a 6x6 numpy array:
array([[3, 1, 0, 1, 5, 4],
[2, 9, 9, 4, 8, 8],
[2, 3, 4, 3, 2, 9],
[5, 8, 4, 5, 7, 6],
[3, 0, 8, 1, 8, 0],
[6, 7, 1, 9, 0, 5]])
How can I get a list of, say, all 2x3 submatrices? What about non-overlapping ones?
I could code this in myself, but I'm sure this is a common enough operation that it already exists in numpy, I just can't find it.
Upvotes: 4
Views: 2662
Reputation: 221614
Listed in this post is a generic approach to get a list of submatrices with given shape. Based on the order of submatrices being row (C-style) or column major (fortran-way), you would have two choices. Here's the implementation with np.reshape
, np.transpose
and np.array_split
-
def split_submatrix(x,submat_shape,order='C'):
p,q = submat_shape # Store submatrix shape
m,n = x.shape
if np.any(np.mod(x.shape,np.array(submat_shape))!=0):
raise Exception('Input array shape is not divisible by submatrix shape!')
if order == 'C':
x4D = x.reshape(-1,p,n/q,q).transpose(0,2,1,3).reshape(-1,p,q)
return np.array_split(x4D,x.size/(p*q),axis=0)
elif order == 'F':
x2D = x.reshape(-1,n/q,q).transpose(1,0,2).reshape(-1,q)
return np.array_split(x2D,x.size/(p*q),axis=0)
else:
print "Invalid output order."
return x
Sample run with a modified sample input -
In [201]: x
Out[201]:
array([[5, 2, 5, 6, 5, 6, 1, 5],
[1, 1, 8, 4, 4, 5, 2, 5],
[4, 1, 6, 5, 6, 4, 6, 1],
[5, 3, 7, 0, 5, 8, 6, 5],
[7, 7, 0, 6, 5, 2, 5, 4],
[3, 4, 2, 5, 0, 7, 5, 0]])
In [202]: split_submatrix(x,(3,4))
Out[202]:
[array([[[5, 2, 5, 6],
[1, 1, 8, 4],
[4, 1, 6, 5]]]), array([[[5, 6, 1, 5],
[4, 5, 2, 5],
[6, 4, 6, 1]]]), array([[[5, 3, 7, 0],
[7, 7, 0, 6],
[3, 4, 2, 5]]]), array([[[5, 8, 6, 5],
[5, 2, 5, 4],
[0, 7, 5, 0]]])]
In [203]: split_submatrix(x,(3,4),order='F')
Out[203]:
[array([[5, 2, 5, 6],
[1, 1, 8, 4],
[4, 1, 6, 5]]), array([[5, 3, 7, 0],
[7, 7, 0, 6],
[3, 4, 2, 5]]), array([[5, 6, 1, 5],
[4, 5, 2, 5],
[6, 4, 6, 1]]), array([[5, 8, 6, 5],
[5, 2, 5, 4],
[0, 7, 5, 0]])]
Upvotes: 3