Reputation: 2267
I have a df
like this
Category <- c('D_L','D_R','FA1','LBP0W','L-010','L-020','LW_-010','LWA_PT_035','LWA_PT_055','RBP0W','RET_MAG','R-010','R-000','RWA_PT_035','RWA_PT_055','TPH')
ID <- c(111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)
df <- data.frame(ID,Category)
df
ID Category
1 111 D_L
2 112 D_R
3 113 FA1
4 114 LBP0W
5 115 L-010
6 116 L-020
7 117 LW_-010
8 118 LWA_PT_035
9 119 LWA_PT_055
10 120 RBP0W
11 121 RET_MAG
12 122 R-010
13 123 R-000
14 124 RWA_PT_035
15 125 RWA_PT_055
16 126 TPH
I am using sqldf to filter my dataset into 2 categories.
df_R <- sqldf("SELECT * FROM df
WHERE Category NOT LIKE '%_L'
AND Category NOT LIKE 'LW_%'
AND category NOT LIKE 'L-%'
AND category NOT LIKE 'LB%'")
df_L <- sqldf("SELECT * FROM df
WHERE Category NOT LIKE '%_R'
AND Category NOT LIKE 'RW_%'
AND category NOT LIKE 'R-%'
AND category NOT LIKE 'RB%'")
Here I get 2 data frames. Challenge is that:
1) for df_R - I need to return "RWA_PT_035" & not "RWA_PT_055" category 2) for df_L - I need to return "LWA_PT_035" & not "LWA_PT_055" category
and hence when I try to do this
df_R <- sqldf("SELECT * FROM df
WHERE Category NOT LIKE '%_L'
AND Category NOT LIKE 'LW_%'
AND Category NOT LIKE 'L-%'
AND Category NOT LIKE 'LB%'
AND Category LIKE 'RWA_PT_035'")
it returns only 1 observation and that is "RWA_PT_035" for df_R but my desired output is
ID Category
1 112 D_R
2 113 FA1
3 120 RBP0W
4 121 RET_MAG
5 122 R-010
6 123 R-000
7 124 RWA_PT_035
8 126 TPH
and for df_L
ID Category
1 111 D_L
2 113 FA1
3 114 LBP0W
4 115 L-010
5 116 L-020
6 117 LW_-010
7 118 LWA_PT_035
8 121 RET_MAG
9 126 TPH
I would like to know if I could use "LIKE" and "NOT LIKE" in a query at the same time like the above? or if there is any other way to do this?
I am also open to other methods like data.table or dplyr instead of sqldf.
Upvotes: 1
Views: 2017
Reputation: 56149
To replicate @DavidArenburg solution using sqldf
:
#Using @DavidArenburg solution:
res1 <- df[!grepl("_R|RWA_|R-|RB|_PT_055", df$Category),]
#Using sqldf
library(sqldf)
res2 <- sqldf("SELECT * FROM df
WHERE Category NOT LIKE '%_R' AND
Category NOT LIKE 'RWA_%' AND
Category NOT LIKE 'R-%' AND
Category NOT LIKE 'RB%' AND
Category NOT LIKE '%_PT_055'")
# res1 == res2
# ID Category
# 1 TRUE TRUE
# 3 TRUE TRUE
# 4 TRUE TRUE
# 5 TRUE TRUE
# 6 TRUE TRUE
# 7 TRUE TRUE
# 8 TRUE TRUE
# 11 TRUE TRUE
# 16 TRUE TRUE
Upvotes: 1
Reputation: 2267
I got the solution from David Arenburg
df[!grepl("_R|RWA_|R-|RB|_PT_055", df$Category),]
Upvotes: 2