Reputation: 519
I am trying to write a DP solution for the problem: count total number of sub-sequences possible of an array whose elements' sum is divisible by k.
I have written the following solution. But it is not giving the correct result. Like in the following code snippet, the array is {1, 2, 1} and k = 3. So expected total number of sub sequences divisible by 3 is 2, but the actual result is 3 which is clearly incorrect.
Please point out my mistake.
private int countDP(int[] a, int k)
{
int L = a.length;
int[][] DP = new int[L][k];
for(int i = 0; i < DP.length; i++)
{
for(int j = 0; j < DP[0].length; j++)
DP[i][j] = -1;
}
int res = _countDP(a, k, DP, 0, 0);
return res;
}
private int _countDP(int[] a, int k, int[][] DP, int idx, int m) //Not giving the correct result.
{
if(idx == a.length)
return m == 0 ? 1 : 0;
if(DP[idx][m] != -1)
return DP[idx][m];
int ans = 0;
ans = _countDP(a, k, DP, idx + 1, m);
ans += _countDP(a, k, DP, idx + 1, (m + a[idx]) % k);
return DP[idx][m] = ans;
}
public static void main(String[] args)
{
CountSubnsequences cs = new CountSubnsequences();
int[] a = {1, 2, 1};
int k = 3;
int total1 = cs.countDP(a, k);
System.out.println("Total numeber of sub sequences: " + total1);
}
Upvotes: 2
Views: 7626
Reputation: 1
Faced the same issue. But ended up getting an answer.
The answer returning will be always 1 more than the total possible subsequences. This is because we know that 0 is always being a valid answer. So, if let's say you do not pick any single element from the array, then also the sum=0. So, it considers it as a valid answer and increments our answer by 1. So, to get the actual answer Just decrement the returned value by 1.
Upvotes: 0
Reputation: 53
Python code of @piotrekg2 solution. Looks good!
from typing import List
# dp[i][j] = the number of subsequences of length i with remainder equal to j.
def count_subseq(s: List[int],k):
n = len(s)
dp = [0]*k
dp[0] = 1 # i=0, remainder=0, only 1 subseq
for i in range(1,n+1):
dp2 = dp.copy() # copy previous i-length results: results without s[i] in subseq
for j in range(k):
dp2[(j+s[i-1])%k] += dp[j]
dp = dp2
return dp[0]
if __name__ == '__main__':
print(count_subseq([2,3,5,8],5))
print(count_subseq([5,5,5],5))
Upvotes: 0
Reputation: 1257
Let s
denote a sequence of length N
, and K
be a given divisor.
dp[i][j]
= the number of subsequences of s[0..i]
with remainder equal to j
. We will compute dp
for all 0 <= i < N
and 0 <= j < K
.
dp[i][j] = 0 for all (i, j)
dp[0][0] += 1
dp[0][s[0] mod K] += 1
for i = 1 .. N - 1
for j = 0 .. K - 1
dp[i][j] = dp[i - 1][j]
for j = 0 .. K - 1
dp[i][(j + s[i]) mod K] += dp[i - 1][j]
The result is dp[N - 1][0]
Upvotes: 5
Reputation: 1
int fun(int i,int s)
{
if(i==1){
if(s-a[i]!=0 && (s-a[i])%k==0)
return 1;
else
return 0;}
else{
if((s-a[i])%k==0){
return 1+fun(i-1,s-a[i])+fun(i-1,s);
}
else{
return fun(i-1,s-a[i])+fun(i-1,s);
}
}
}
Upvotes: -1