Reputation: 1088
I have a numpy array containing positive and negative values, and I want to adjust the negative entries so that the sum is not negative, starting with the most negative entry. The maximum adjustment is to make a negative entry zero. I have an implementation using a loop, is there a way to do it using numpy array methods? Here is my code:
initial_values = np.asarray([50,-200,-180,110])
sorted_index = np.argsort(initial_values)
final_values = initial_values
for i, entry in enumerate(final_values[sorted_index]):
ss = final_values.sum()
if ss >= 0:
break
adjustment = max(entry, ss)
final_values[sorted_index[i]] -= adjustment
print final_values
The starting array is [50,-200,-180,110], the answer in this case is [50, 0, -160, 110], so the most negative entry is set to zero, and then the next most negative entry is adjusted to make the sum zero.
Does anyone have a simpler, faster numpy based solution?
Upvotes: 2
Views: 385
Reputation: 221614
Here's one vectorized approach -
# Get a copy of input as the output
out = initial_values.copy()
# Get sorted indices
sorted_index = np.argsort(out)
# Mask of elements that would be made zero for sure and zero them
mask = out.sum() < out[sorted_index].cumsum()
out[sorted_index[mask]] = 0
# There might be one element left to make the sum absolutely zero.
# Make it less negative to make the absolute sum zero.
out[sorted_index[np.where(mask)[0][-1]+1]] -= out.sum()
Sample run -
Function definitions -
In [155]: def vectorized(initial_values):
...: out = initial_values.copy()
...: sorted_index = np.argsort(out)
...: mask = out.sum() < out[sorted_index].cumsum()
...: out[sorted_index[mask]] = 0
...: out[sorted_index[np.where(mask)[0][-1]+1]] -= out.sum()
...: return out
...:
...: def org_app(initial_values):
...: final_values = initial_values.copy()
...: sorted_index = np.argsort(initial_values)
...: for i, entry in enumerate(final_values[sorted_index]):
...: ss = final_values.sum()
...: if ss >= 0:
...: break
...: adjustment = max(entry, ss)
...: final_values[sorted_index[i]] -= adjustment
...: return final_values
...:
Case #1 :
In [156]: initial_values
Out[156]: array([ 50, -200, -180, 110])
In [157]: vectorized(initial_values)
Out[157]: array([ 50, 0, -160, 110])
In [158]: org_app(initial_values)
Out[158]: array([ 50, 0, -160, 110])
Case #2 :
In [163]: initial_values
Out[163]: array([ 50, -20, -14, -22, -15, 6, -21, -19, -17, 4, 5, -56])
In [164]: vectorized(initial_values)
Out[164]: array([ 50, 0, -14, 0, -15, 6, 0, -19, -17, 4, 5, 0])
In [165]: org_app(initial_values)
Out[165]: array([ 50, 0, -14, 0, -15, 6, 0, -19, -17, 4, 5, 0])
Runtime tests -
In [177]: initial_values = np.random.randint(-100,20,(50000))
In [178]: np.array_equal(vectorized(initial_values),org_app(initial_values))
Out[178]: True
In [179]: %timeit org_app(initial_values)
1 loops, best of 3: 2.08 s per loop
In [180]: %timeit vectorized(initial_values)
100 loops, best of 3: 5.7 ms per loop
Here's a slightly improved (lesser code and better runtime) version of the earlier proposed approach -
# Get a copy of input as the output
out = initial_values.copy()
# Get sorted indices
sorted_index = np.argsort(out)
# Last index in sorted indexed indices for setting elements in input array to 0's
idx = np.where(out.sum() < out[sorted_index].cumsum())[0][-1]
# Set until idx indexed into sorted_index in turn indexed into input array t0 0's
out[sorted_index[:idx+1]] = 0
# There might be one element left to make the sum absolutely zero.
# Make it less negative to make the absolute sum zero.
out[sorted_index[idx+1]] -= out.sum()
Runtime tests -
In [18]: initial_values = np.random.randint(-100,20,(50000))
In [19]: %timeit vectorized(initial_values)
100 loops, best of 3: 5.58 ms per loop
In [20]: %timeit vectorized_v2(initial_values) # improved version
100 loops, best of 3: 5.4 ms per loop
Upvotes: 2