Reputation: 10398
I want to visualize the correlation between columns that I get with datafrome.corr()
method.
The result looks like:
What I am trying to do here is to draw that matrix with gradient colors based on the values of the data frame.
Something like (Just an example from the web):
Upvotes: 0
Views: 2591
Reputation: 696
If you can import your data into numpy here is a simple solution using matplotlib and should produce a heatmap similar to what you posted. You will just need to replace the dummy data with your data.
import numpy as np
import matplotlib.pyplot as plt
# Generate some test data
data = np.arange(100).reshape((10,10))
plt.title('Actual Function')
heatmap = plt.pcolor(data)
plt.show()
Edit: Here is a bit fancier version with your x and y axis labels. I chose to put them into two lists so that you could change each one independently.
import numpy as np
import matplotlib.pyplot as plt
# Generate some test data
data = np.arange(100).reshape((10,10))
xlabels = ['capacity', 'failure_rate', 'id', 'margin', 'price', 'prod_cost', 'product_type', 'quality', 'warranty', 'market_share', 'attractiveness']
ylabels = ['capacity', 'failure_rate', 'id', 'margin', 'price', 'prod_cost', 'product_type', 'quality', 'warranty', 'market_share', 'attractiveness']
fig, ax = plt.subplots()
ax.set_xticks(np.arange(data.shape[1]) + 0.5, minor=False)
ax.set_yticks(np.arange(data.shape[0]) + 0.5, minor=False)
ax.xaxis.tick_top()
plt.xticks(rotation=90)
ax.set_xticklabels(xlabels, minor=False)
ax.set_yticklabels(ylabels, minor=False)
heatmap = ax.pcolor(data)
ax = plt.gca()
for t in ax.xaxis.get_major_ticks():
t.tick1On = False
t.tick2On = False
for t in ax.yaxis.get_major_ticks():
t.tick1On = False
t.tick2On = False
plt.show()
Upvotes: 5