Reputation: 1445
I have have difficult in figuring out how I can turn my specific dataframe from my excel spreadsheet df[50] into a data frame with some specifications. (I do not want the first value into the array). For example df[50] consists of:
print(df[50])
0 50
1 29.52
2 29.97
3 29.52
4 29.97
5 31.5
6 33.93
7 36.54
8 34.02
9 33.48
10 32.04
11 33.03
12 35.01
What I would like is:
[29.52, 29.97, 29.52, 29.97, 31.5, 33.93, 36.54, 34.02, 33.48, 32.04, 33.03, 35.01]
how would i go about skipping the first value?
Thanks.
Upvotes: 0
Views: 58
Reputation: 863531
I use function tolist()
from subset of df
selected rows by position iloc[1:]
:
print df[50]
#0 29.52
#1 29.97
#2 29.52
#3 29.97
#4 31.50
#5 33.93
#6 36.54
#7 34.02
#8 33.48
#9 32.04
#10 33.03
#11 35.01
List of string:
print [ '%.2f' % elem for elem in df[50].iloc[1:].tolist() ]
#['29.97', '29.52', '29.97', '31.50', '33.93', '36.54', '34.02', '33.48', '32.04', '33.03', '35.01']
List of float:
I has to use function round, because interpretation of float. More info
print [ round(elem, 2) for elem in df[50].iloc[1:].tolist() ]
#[29.97, 29.52, 29.97, 31.5, 33.93, 36.54, 34.02, 33.48, 32.04, 33.03, 35.01]
Series:
print df.iloc[1:,50]
#1 29.97
#2 29.52
#3 29.97
#4 31.50
#5 33.93
#6 36.54
#7 34.02
#8 33.48
#9 32.04
#10 33.03
#11 35.01
#Name: name, dtype: float64
Numpy array:
print np.array(df[50].iloc[1:].tolist())
#[ 29.97 29.52 29.97 31.5 33.93 36.54 34.02 33.48 32.04 33.03 35.01]
Upvotes: 1