gsamaras
gsamaras

Reputation: 73366

Upper bound on speedup

My MPI experience showed that the speedup as does not increase linearly with the number of nodes we use (because of the costs of communication). My experience is similar to this:MPI speedup drops after some point.

Today a speaker said: "Magically (smiles), in some occasions we can get more speedup than the ideal one!".

He meant that ideally, when we use 4 nodes, we would get a speedup of 4. But in some occasions we can get a speedup greater than 4, with 4 nodes! The topic was related to MPI.

Is this true? If so, can anyone provide a simple example on that? Or maybe he was thinking about adding multithreading to the application (he went out of time and then had to leave ASAP, thus we could not discuss)?

Upvotes: 3

Views: 1220

Answers (3)

Ian Bush
Ian Bush

Reputation: 7433

Cache has been mentioned, but it's not the only possible reason. For instance you could imagine a parallel program which does not have sufficient memory to store all its data structures at low node counts, but foes at high. Thus at low node counts the programmer may have been forced to write intermediate values to disk and then read them back in again, or alternatively re-calculate the data when required. However at high node counts these games are no longer required and the program can store all its data in memory. Thus super-linear speed-up is a possibility because at higher node counts the code is just doing less work by using the extra memory to avoid I/O or calculations.

Really this is the same as the cache effects noted in the other answers, using extra resources as they become available. And this is really the trick - more nodes doesn't just mean more cores, it also means more of all your resources, so as speed up really measures your core use if you can also use those other extra resources to good effect you can achieve super-linear speed up.

Upvotes: 1

Hristo Iliev
Hristo Iliev

Reputation: 74375

Parallel efficiency (speed-up / number of parallel execution units) over unity is not at all uncommon.

The main reason for that is the total cache size available to the parallel program. With more CPUs (or cores), one has access to more cache memory. At some point, a large portion of the data fits inside the cache and this speeds up the computation considerably. Another way to look at it is that the more CPUs/cores you use, the smaller the portion of the data each one gets, until that portion could actually fit inside the cache of the individual CPU. This is sooner or later cancelled by the communication overhead though.

Also, your data shows the speed-up compared to the execution on a single node. Using OpenMP could remove some of the overhead when using MPI for intranode data exchange and therefore result in better speed-up compared to the pure MPI code.

The problem comes from the incorrectly used term ideal speed-up. Ideally, one would account for cache effects. I would rather use linear instead.

Upvotes: 5

Gilles
Gilles

Reputation: 9489

Not too sure this is on-topic here, but here goes nothing...

This super-linearity in speed-up can typically occur when you parallelise your code while distributing the data in memory with MPI. In some cases, by distributing the data across several nodes / processes, you end-up having sufficiently small chunks of data to deal with for each individual process that it fits in the cache of the processor. This cache effect might have a huge impact on the code's performance, leading to great speed-ups and compensating for the increased need of MPI communications... This can be observed in many situations, but this isn't something you can really count for for compensating a poor scalability.

Another case where you can observe this sort of super-linear scalability is when you have an algorithm where you distribute the task of finding a specific element in a large collection: by distributing your work, you can end up in one of the processes/threads finding almost immediately the results, just because it happened to be given range of indexes starting very close to the answer. But this case is even less reliable than the aforementioned cache effect.

Hope that gives you a flavour of what super-linearity is.

Upvotes: 2

Related Questions