Reputation: 3837
I have an 3 channel image that is basically a composition of weighted patches. After adding all contributions to my sum image, I want to divide it by the weights. Right now, I use the following code:
Mat weighted_sum, weights;
// for (Patch p: patches)
// weighted_sum[loc_p] += w * p
// weights[loc_p] += w;
vector<Mat> channels(3);
split(weighted_sum, channels);
for (Mat chan: channels) {
divide(chan, weights, chan);
}
merge(channels, reconstructed);
Is there any more efficient solution for dividing all 3 channels of an image by the same 1-channel image?
Upvotes: 2
Views: 2615
Reputation: 41765
I tested your method against:
weights
a 3 channel matrix, and apply divide
on whole matrices @Micka.Results (in ms):
Size Method1 Metdhod2 Method3 Method4
[2 x 2] 0.0359212 0.00183271 0.000733086 1.77333
[10 x 10] 0.0117294 0.00293234 0.00109963 0.0051316
[100 x 100] 0.422624 0.241918 0.0751413 0.319625
[1000 x 1000] 20.757 20.3673 7.28284 18.4389
[2000 x 2000] 83.6238 82.942 28.4353 74.2132
NOTES
clone()
, see commented lines in code below). With deep copy of the original matrix both methods are slower, but Method 3 is still the fastest.double
matrices, since cvtColor
doesn't accepts double
).Here the code I used. I'm testing on float matrices, but it's easy to port to other types.
#include <opencv2/opencv.hpp>
#include <iostream>
#include <vector>
using namespace std;
using namespace cv;
int main()
{
vector<Size> sizes{Size(2,2), Size(10,10), Size(100,100), Size(1000,1000), Size(2000,2000)};
cout << "Size \t\tMethod1 \tMetdhod2 \tMethod3 \tMethod4" << endl;
for (int is = 0; is < sizes.size(); ++is)
{
Size sz = sizes[is];
Mat3f weighted_sum(sz);
randu(weighted_sum, 0, 200);
Mat1f weights(sz);
randu(weights, 0, 10);
Mat3f ws1 = weighted_sum.clone();
Mat3f ws2 = weighted_sum.clone();
Mat3f ws3 = weighted_sum.clone();
Mat3f ws4 = weighted_sum.clone();
// Method 1 @parmari
double tic1 = double(getTickCount());
Mat3f rec1;
vector<Mat> channels(3);
split(ws1, channels);
for (Mat chan : channels) {
divide(chan, weights, chan);
}
merge(channels, rec1);
double toc1 = (double(getTickCount() - tic1)) * 1000. / getTickFrequency();
// Method 2 @Miki
double tic2 = double(getTickCount());
Mat3f rec2 = ws2.reshape(3, 1);
//Mat3f rec2 = ws2.reshape(3, 1).clone(); // To not override original image
Mat1f ww2 = weights.reshape(1, 1);
for (int i = 0; i < rec2.cols; ++i)
{
double w = ww2(0, i);
Vec3f& v = rec2(0, i);
v[0] /= w;
v[1] /= w;
v[2] /= w;
}
rec2 = rec2.reshape(3, ws2.rows);
double toc2 = (double(getTickCount() - tic2)) * 1000. / getTickFrequency();
// Method 3 @Miki (+ @Micka)
double tic3 = double(getTickCount());
Mat3f rec3 = ws3.reshape(3, 1);
//Mat3f rec3 = ws3.reshape(3, 1).clone(); // To not override original image
Mat1f ww3 = weights.reshape(1, 1);
Vec3f* prec3 = rec3.ptr<Vec3f>(0);
float* pww = ww3.ptr<float>(0);
for (int i = 0; i < rec3.cols; ++i)
{
float scale = 1. / (*pww);
(*prec3)[0] *= scale;
(*prec3)[1] *= scale;
(*prec3)[2] *= scale;
++prec3; ++pww;
}
rec3 = rec3.reshape(3, ws3.rows);
double toc3 = (double(getTickCount() - tic3)) * 1000. / getTickFrequency();
// Method 4 @Micka
double tic4 = double(getTickCount());
Mat3f rec4;
Mat3f w3ch4;
cvtColor(weights, w3ch4, COLOR_GRAY2BGR);
divide(ws4, w3ch4, rec4);
double toc4 = (double(getTickCount() - tic4)) * 1000. / getTickFrequency();
cout << sz << " \t" << toc1 << " \t" << toc2 << " \t" << toc3 << " \t" << toc4 << endl;
}
getchar();
return 0;
}
Upvotes: 3