Reputation: 9712
I have a Neo4j graph with directed cycles. I have had no issue finding all descendants of A
assuming I don't care about loops using this Cypher query:
match (n:TEST{name:"A"})-[r:MOVEMENT*]->(m:TEST)
return n,m,last(r).movement_time
The relationships between my nodes have a timestamp property on them, movement_time
. I've simulated that in my test data below using numbers that I've imported as floats. I would like to traverse the graph using the timestamp as a constraint. Only follow relationships that have a greater movement_time than the movement_time of the relationship that brought us to this node.
Here is the CSV sample data:
from,to,movement_time
A,B,0
B,C,1
B,D,1
B,E,1
B,X,2
E,A,3
Z,B,5
C,X,6
X,A,7
D,A,7
Here is what the graph looks like:
I would like to calculate the descendants of every node in the graph and include the timestamp from the last relationship using Cypher; so I'd like my output data to look something like this:
Node:[{Descendant,Movement Time},...]
A:[{B,0},{C,1},{D,1},{E,1},{X,2}]
B:[{C,1},{D,1},{E,1},{X,2},{A,7}]
C:[{X,6},{A,7}]
D:[{A,7}]
E:[{A,3}]
X:[{A,7}]
Z:[{B,5}]
This non-Neo4J implementation looks similar to what I'm trying to do: Cycle enumeration of a directed graph with multi edges
Upvotes: 0
Views: 301
Reputation: 39915
This one is not 100% what you want, but very close:
MATCH (n:TEST)-[r:MOVEMENT*]->(m:TEST)
WITH n, m, r, [x IN range(0,length(r)-2) |
(r[x+1]).movement_time - (r[x]).movement_time] AS deltas
WHERE ALL (x IN deltas WHERE x>0)
RETURN n, collect(m), collect(last(r).movement_time)
ORDER BY n.name
We basically find all the paths between any of your nodes (beware cartesian products get very expensive on non-trivial datasets). In the WITH
we're building a collection delta's
that holds the difference between two subsequent movement_time
properties.
The WHERE
applies an ALL
predicate to filter out those having any non-positive value - aka we guarantee increasing values of movement_time
along the path.
The RETURN
then just assembles the results - but not as a map, instead one collection for the reachable nodes and the last value of movement_time
.
The current issue is that we have duplicates since e.g. there are multiple paths from B
to A
.
As a general notice: this problem is much more elegantly and more performant solvable by using Java traversal API (http://neo4j.com/docs/stable/tutorial-traversal.html). Here you would have a PathExpander
that skips paths with decreasing movement_time
early instead of collection all and filter out (as Cypher does).
Upvotes: 1