Reputation: 59
In my example I have a class Foo<T>
. In my function test
I need to get the template parameter of Foo
otherwise the normal type. First I started to use std::conditional
but forgot that the template parameters must all be valid, no matter which one is picked. Is the only way to create a type-specialisation for non-Foo
types?
#include <type_traits>
template <typename TYPE>
class Foo
{
public:
using M = TYPE;
};
template <typename T>
void test(const T& a)
{
// actually I would have used !is_foo<T>::value for the first arg
// but this check is fine to minimise the example
using MY_TYPE = typename std::conditional<
std::is_same<T, int>::value,
T,
typename T::M>::type; // <---Error: error: type 'int' cannot be used prior to '::' because it has no members
}
int main()
{
test(Foo<int>()); // MY_TYPE must be int
test(int()); // MY_TYPE must be int
return 0;
}
Upvotes: 2
Views: 152
Reputation: 3977
You can do some void_t magic to allow SFINAE to figure help you out:
#include <type_traits>
#include <iostream>
#include <typeinfo>
template <typename TYPE>
class Foo
{
public:
using M = TYPE;
};
template<typename... Ts> struct make_void { typedef void type;};
template<typename... Ts> using void_t = typename make_void<Ts...>::type;
// primary template handles types that have no nested ::T member:
template< class T, class = void_t<> >
struct M_or_T { using type = T; };
// specialization recognizes types that do have a nested ::T member:
template< class T >
struct M_or_T<T, void_t<typename T::M>> { using type = typename T::M; };
template <typename T>
void test(const T& a)
{
using MY_TYPE = typename M_or_T<T>::type;
std::cout << typeid(MY_TYPE).name() << "\n";
}
int main()
{
test(Foo<int>()); // MY_TYPE must be int
test(int()); // MY_TYPE must be int
return 0;
}
What happens is that the second overload of M_or_T
substitution fails for int
(and for any type without a type member M
) and thus the first overload is chosen. For types which have a type member M
, a more specialized second overload is chosen.
Upvotes: 2
Reputation: 1212
#include <type_traits>
template <typename TYPE>
class Foo
{
public:
using M = TYPE;
};
template <typename T>
void test(const Foo<T>& a)
{
using MY_TYPE = Foo<T>::M;
testOther<MY_TYPE>(a);
}
template <typename T>
void test(const T& a)
{
using MY_TYPE = T;
testOther<MY_TYPE>(a);
}
template <typename T, typename S>
void testOther(const S& a)
{
// do stuff
}
int main()
{
test(Foo<int>()); // MY_TYPE must be int
test(int()); // MY_TYPE must be int
return 0;
}
I'm not exactly sure what you wanted, but I hope this is what you wanted. It might be a bit off. I didn't compile this.
Upvotes: 0
Reputation: 65620
Well you could make an UnFoo
helper to get the right type for you:
template <typename T>
struct UnFoo {
using type = T;
};
template <typename T>
struct UnFoo<Foo<T>> {
using type = T;
};
template <typename T>
void test(const T& a)
{
using MY_TYPE = typename UnFoo<T>::type; //maybe with a helper to get rid of typename
}
Another option would be to write an overload for Foo<T>
and have it delegate to the other function, but that depends on what your real test
function does.
Upvotes: 5