Reputation: 3609
I used the answer to this question to try to make a similar slice on my dataframe. But it doesn't seem to work because my row index is a TimeSeries. I am not sure how to rephrase the slice to work.
The df I'm using has a single TimeSeries index, and the columns are a two-level MultiIndex. I'm attempting to, for an arbitrary row, to return a series of consisting of the "px" subcolumn of each major column.
The first attempt: df.loc[0,(slice(None), 'px')]
throws a TypeError,
TypeError: cannot do index indexing on <class 'pandas.tseries.index.DatetimeIndex'> with these indexers [0] of <type 'int'>
So I also have tried to feed it a DateTime for the index, instead of an int:
useIndex = sdf.index[0]
return df.loc[useIndex,(slice(None), 'px')]
Which gives a:
KeyError: 'MultiIndex Slicing requires the index to be fully lexsorted tuple len (2), lexsort depth (0)'
Postscript...
If I just do a simple,
useIndex = sdf.index[0]
useIndex
sdf.iloc[useIndex]
I get the failure:
TypeError: cannot do label indexing on <class 'pandas.tseries.index.DatetimeIndex'> with these indexers [2015-10-08 00:00:00] of <class 'pandas.tslib.Timestamp'>
So maybe the problem is that I'm not really passing a valid index to the MultiIndex slice?
================
Here are two examples: The first df ('df') I'm able to pull out the data I want. The second df, ('df2') throws a Type Error.
import pandas as pd
import numpy as np
cols = [['col_1', 'col_2'], ['delta', 'px']]
multi_idx = pd.MultiIndex.from_product(cols, names= ["level_0", "level_1"])
df = pd.DataFrame(np.random.rand(20).reshape(5, 4), index=range(5), columns=multi_idx)
row_number =1
print df.loc[df.index[row_number], pd.IndexSlice[:, 'px']]
rng = pd.date_range('1/1/2011', periods=5, freq='H')
df2 = pd.DataFrame(np.random.rand(20).reshape(5, 4), index=rng, columns=multi_idx)
#print df2.loc[df.index[row_number], pd.IndexSlice[:, 'px']]
useIndex = df2.index[0]
print df2.loc[useIndex, pd.IndexSlice[:, 'px']]
Upvotes: 0
Views: 987
Reputation: 109546
Using IndexSlice
should help get your desired results. Note that the columns first need to be lex sorted:
cols = [['col_1', 'col_2'], ['delta', 'px']]
multi_idx = pd.MultiIndex.from_product(cols, names= ["level_0", "level_1"])
df = pd.DataFrame(np.random.rand(20).reshape(5, 4), index=range(5), columns=multi_idx)
>>> df
level_0 col_1 col_2
level_1 delta px delta px
0 0.891758 0.071693 0.629897 0.693161
1 0.772542 0.022781 0.684584 0.892641
2 0.925957 0.794940 0.146950 0.134798
3 0.159558 0.842898 0.677927 0.028675
4 0.436268 0.989759 0.471879 0.101878
row_number = 3
>>> df.loc[df.index[row_number], pd.IndexSlice[:, 'px']]
level_0 level_1
col_1 px 0.842898
col_2 px 0.028675
Name: 3, dtype: float64
Upvotes: 1