Reputation: 9431
I am using Pandas to create a new column in a data frame created from a csv.
[in] DfT_raw = pd.read_csv('./file.csv', index_col = False)
[in] print(DfT_raw)
[out] Region Name dCount ONS CP S Ref E S Ref N Road \
0 East Midlands E06000015 14/04/00 00:00 37288 434400 336000 A516
1 East Midlands E06000015 14/04/00 00:00 37288 434400 336000 A516
2 East Midlands E06000015 14/04/00 00:00 37288 434400 336000 A516
3 East Midlands E06000015 14/04/00 00:00 37288 434400 336000 A516
I define a function to strip the time from the datetime fieldn (dCount) and then create a new column 'date'
[in] def date_convert(dCount):
return dCount.date()
DfT_raw['date'] = DfT_raw.apply(lambda row: date_convert(row['dCount']), axis=1)
[out] AttributeError: ("'str' object has no attribute 'date'", u'occurred at index 0')
There is some issue with the index_col. I previously used index_col = 1 but got the same error.
When I print 'dCount' I get
0 14/04/00 00:00
1 14/04/00 00:00
2 14/04/00 00:00
3 14/04/00 00:00
4 14/04/00 00:00
The index column is causing the error. How do I ensure this isn't given to the function?
Upvotes: 3
Views: 13228
Reputation: 394091
Your error here is that your dates are str
not datetime
, either convert using to_datetime
:
df['dCount'] = pd.to_datetime(df['dCount'])
or better just tell read_csv
to parse that column as datetime:
DfT_raw = pd.read_csv('./file.csv', parse_dates=['dCount'],index_col = False)
Afterwards you can then get just the date by calling the dt.date
accessor
Upvotes: 4