Reputation: 1506
I'm trying to write a Haskell function that would take three lists and return a list of sums of their elements. Currently I'm trying to do it using zipWith3:
sum3 :: Num a => [a] -> [a] -> [a] -> [a]
sum3 xs ys zs = zipWith3 (\x y z -> x+y+z) xs ys zs
The problem is it only works for lists of equal lengths. But I wish sum3
to work with lists of unequal lengths, so that
sum3 [1,2,3] [4,5] [6]
would return
[11,7,3]
I think that I should redefine zipWith3 to work with lists of unequal lengths, but can't figure out how to do it (I suspect that I have to exhaust all possibilities of empty lists). Is there a solution?
Upvotes: 2
Views: 1331
Reputation: 11
This is my solution:
sumLists :: Num a => [a] -> [a] -> [a]
sumLists (x : xs) (y : ys) = (x + y) : sumLists xs ys
sumLists _ _ = []
sum3 :: (Num a, Enum a) => [a] -> [a] -> [a] -> [a]
sum3 xs ys zs = foldr sumLists defaultList (map addElems list)
where list = [xs, ys, zs]
defaultList = [] ++ [0, 0 ..]
maxLength = maximum $ map length list
addElems = \x -> if length x < maxLength then x ++ [0, 0 ..] else x
Upvotes: 0
Reputation: 116139
One could generalize zipWith
so to handle the excess tails, instead of discarding them silently.
zipWithK :: (a->b->c) -> ([a]->[c]) -> ([b]->[c]) -> [a] -> [b] -> [c]
zipWithK fab fa fb = go
where go [] [] = []
go as [] = fa as
go [] bs = fb bs
go (a:as) (b:bs) = fab a b : go as bs
The original zipWith
is then
zipWith' :: (a->b->c) -> [a] -> [b] -> [c]
zipWith' f = zipWithK f (const []) (const [])
Back to the original problem,
sum2 :: Num a => [a] -> [a] -> [a]
sum2 = zipWithK (+) id id
sum3 :: Num a => [a] -> [a] -> [a] -> [a]
sum3 xs ys zs = xs `sum2` ys `sum2` zs
Upvotes: 2
Reputation: 43383
I've seen this sort of question before, here: Zip with default value instead of dropping values? My answer to that question also pertains here.
The ZipList
applicative
Lists with a designated padding element are applicative (the applicative grown from the 1 and max monoid structure on positive numbers).
data Padme m = (:-) {padded :: [m], padder :: m} deriving (Show, Eq)
instance Applicative Padme where
pure = ([] :-)
(fs :- f) <*> (ss :- s) = zapp fs ss :- f s where
zapp [] ss = map f ss
zapp fs [] = map ($ s) fs
zapp (f : fs) (s : ss) = f s : zapp fs ss
-- and for those of you who don't have DefaultSuperclassInstances
instance Functor Padme where fmap = (<*>) . pure
Now we can pack up lists of numbers with their appropriate padding
pad0 :: [Int] -> Padme Int
pad0 = (:- 0)
And that gives
padded ((\x y z -> x+y+z) <$> pad0 [1,2,3] <*> pad0 [4,5] <*> pad0 [6])
= [11,7,3]
Or, with the Idiom Brackets that aren't available, you vould write
padded (|pad0 [1,2,3] + (|pad0 [4,5] + pad0 6|)|)
meaning the same.
Applicative
gives you a good way to bottle the essential idea of "padding" that this problem demands.
Upvotes: 6
Reputation: 38217
Perhaps you could get away with something that is almost zipWith3
but which relies on Default
to generate empty values on the fly if one of the lists runs out of elements:
import Data.Default
zipWith3' :: (Default a, Default b, Default c)
=> ( a -> b -> c -> r )
-> ([a] -> [b] -> [c] -> [r])
zipWith3' f = go where
go [] [] [] = []
go (x:xs) (y:ys) (z:zs) = f x y z : go xs ys zs
go [] ys zs = go [def] ys zs
go xs [] zs = go xs [def] zs
go xs ys [] = go xs ys [def]
and 'sum3'`:
sum3' :: (Default a, Num a) => [a] -> [a] -> [a] -> [a]
sum3' = zipWith3' (\x y z -> x + y + z)
Upvotes: 2
Reputation: 38217
Well if you must use zipWith3
:
sum3 :: Num a => [a] -> [a] -> [a] -> [a]
sum3 xs ys zs = zipWith3 (\x y z -> x + y + z) xs' ys' zs'
where
xs' = pad nx xs; nx = length xs
ys' = pad ny ys; ny = length ys
zs' = pad nz zs; nz = length zs
n = nx `max` ny `max` nz
pad n' = (++ replicate (n-n') 0)
Some samples:
*> sum3 [] [] []
[]
*> sum3 [0] [] []
[0]
*> sum3 [1] [1] [2, 2]
[4,2]
*> sum3 [1,2,3] [4,5] [6]
[11,7,3]
but I'd recommend going with Carsten's transpose
based implementation.
Upvotes: 2
Reputation: 52280
a nice trick is to use transpose
:
import Data.List (transpose)
sum3 :: Num a => [a] -> [a] -> [a] -> [a]
sum3 as bs cs = map sum $ transpose [as,bs,cs]
because obviously you want to sum up the columns ;)
> sum3 [1,2,3] [4,5] [6]
[11,7,3]
Upvotes: 12