Reputation: 123
Is there an easy way to generate a swimmer plot in R? Same data as in a KM curve but with each individual survival represented as a line. Example:
I've searched stackoverflow, the R-help mailing list, and consulted Dr. Google without an obvious answer, though my search technique may be suboptimal. Thank you!
**** ADDENDED **** Apologies for not appropriately asking a question - this is my first time! Playing around, I've been able to do the following:
OS DeathYN TreatmentGroup
4 444 days 1 0
5 553 days 1 0
8 812 days 0 0
1 844 days 0 0
10 1071 days 0 0
9 1147 days 0 0
6 1349 days 0 0
3 1375 days 0 0
2 1384 days 0 1
7 1687 days 0 0
orderedData$GroupColor[orderedData$TreatmentGroup==0] <- "yellow"
orderedData$GroupColor[orderedData$TreatmentGroup==1] <- "red"
orderedData$YCoord <- barplot(as.numeric(orderedData$OS), horiz=TRUE, col=orderedData$GroupColor, xlim=c(0,max(orderedData$OS) + 50), xlab="Overall Survival")
points(x=20+as.numeric(orderedData$OS), y=orderedData$YCoord,pch=62, col="green")
legend(1000,2, c("Control", "Treatment", "still living"), col=c("yellow","red", "green"), lty=1, lwd=c(10,10,0),pch=62)
This gets me close enough for now, but aesthetics are not perfect. If there is a package or a better solution someone can suggest I'd love to see it!
Upvotes: 11
Views: 11264
Reputation: 1381
Given the swimmer dataframe taken from here converted into a data frame https://blogs.sas.com/content/graphicallyspeaking/files/2014/06/Swimmer_93.txt
df %>% dplyr::glimpse()
## Observations: 15
## Variables: 9
## $ subjectID "1", "2", "3", "3", "4", "4", "5", "5", "5",...
## $ stage Stage 1, Stage 2, Stage 3, Stage 3, Stage 4,...
## $ startTime 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...
## $ endTime 18.5, 17.0, 14.0, 14.0, 13.5, 13.5, 12.5, 12...
## $ isContinued TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, T...
## $ responseType "Complete response", "Complete response", "P...
## $ responseStartTime 6.5, 10.5, 2.5, 6.0, 7.0, 11.5, 3.5, 6.5, 10...
## $ responseEndTime 13.5, 17.0, 3.5, NA, 11.0, NA, 4.5, 8.5, NA,...
## $ Durable -0.25, -0.25, -0.25, -0.25, NA, NA, -0.25, -...
df.shapes <- df %>%
# Get just the subject and response time columns
dplyr::select(subjectID, responseType, responseStartTime) %>%
# Melt the data frame, so one row per response value.
reshape2::melt(id.vars=c("subjectID", "responseType"),
value.name="time") %>%
# Remove na values
dplyr::filter(!is.na(time)) %>%
# Remove response variable column
dplyr::select(-variable) %>%
# Add 'start' to the end of the response type
dplyr::mutate(responseType=paste(responseType, "start", sep=" "))
# Add the end time for each
df.shapes %<>%
dplyr::bind_rows(df %>%
dplyr::select(subjectID, endTime, responseEndTime,
isContinued) %>%
# Place endtime as response endtime if not
# continuing and responseEndTime is NA
dplyr::mutate(responseEndTime=dplyr::if_else(
!isContinued & is.na(responseEndTime),
endTime, responseEndTime)) %>%
dplyr::select(-endTime, -isContinued) %>%
# Remove other existing NA responseEndTimes
dplyr::filter(!is.na(responseEndTime)) %>%
dplyr::mutate(responseType="Response end") %>%
dplyr::rename(time=responseEndTime))
# Append on the durable column
df.shapes %<>%
dplyr::bind_rows(df %>%
dplyr::select(subjectID, Durable) %>%
dplyr::filter(!is.na(Durable)) %>%
dplyr::mutate(responseType="Durable") %>%
dplyr::rename(time=Durable))
# Add on the arrow sets
df.shapes %<>%
dplyr::bind_rows(df %>%
dplyr::select(subjectID, endTime, isContinued) %>%
dplyr::filter(isContinued) %>%
dplyr::select(-isContinued) %>%
dplyr::mutate(responseType="Continued Treatment") %>%
dplyr::mutate(endTime=endTime+0.25) %>%
dplyr::rename(time=endTime))
responseLevels = c("Complete response start",
"Partial response start",
"Response end", "Durable", "Continued Treatment")
# Convert responseType to factor and set the levels
df.shapes %<>%
dplyr::mutate(responseType = factor(responseType,
levels=responseLevels)) %>%
# Order by response type
dplyr::arrange(desc(responseType))
Set the Unicode variables.
unicode = list(triangle=sprintf('\u25B2'),
circle=sprintf('\u25CF'),
square=sprintf('\u25A0'),
arrow=sprintf('\u2794'))
The df.shapes dataframe should look something like this
df %>% dplyr::glimpse()
## Observations: 45
## Variables: 3
## $ subjectID "1", "3", "3", "4", "4", "5", "5", "5", "6", "6",...
## $ responseType Continued Treatment, Continued Treatment, Continu...
## $ time 18.75, 14.25, 14.25, 13.75, 13.75, 12.75, 12.75, ...
Now pipe the data frame into ggplot
df %>%
# Get just the variables we need for the base of the plot
dplyr::select(subjectID, endTime, stage) %>%
# Remove duplicate rows
dplyr::distinct() %>%
# Order subject ID by numeric value
dplyr::mutate(subjectID=forcats::fct_reorder(.f=subjectID,
.x=as.numeric(subjectID),
.desc = TRUE)) %>%
# Pipe into ggplot
ggplot(aes(subjectID, endTime)) + # Base axis
geom_bar(stat="identity", aes(fill=factor(stage))) + # Bar plot
geom_point(data=df.shapes, size=5, # Use df.shapes to add reponse points
aes(subjectID, time, colour=responseType,
shape=responseType)) +
coord_flip() + # Flip to horizonal bar plot.
scale_colour_manual(values=c(RColorBrewer::brewer.pal(3, "Set1")[1:2],
rep("black", 3))) + # Add colours
scale_shape_manual(values=c(rep(unicode[["triangle"]], 2), # Add shapes
unicode[["circle"]], unicode[["square"]],
unicode[["arrow"]])) +
scale_y_continuous(limits=c(-0.5, 20), breaks=0:20) + # Set time limits
labs(fill="Disease Stage", colour="Symbol Key", shape="Symbol Key",
x="Subject ID ", y="Months since diagnosis",
title="Swimmer Plot",
caption=paste(c("Durable defined as subject with six months",
"or more of confirmed response", sep=" ") +
theme(plot.title = element_text(hjust = 0.5), # Put title in middle
plot.caption = element_text(size=7, hjust=0)) # Make caption small
Full description can be found here: http://rpubs.com/alexiswl/swimmer
Upvotes: 1
Reputation: 93871
You asked for an "easy" way to generate a swimmer plot. This is probably a bit more involved than you were hoping for, but it's pretty close to what you posted. If you need to make a lot of swimmer plots, you can tweak this into something that works for you and then turn it into a function.
First create some fake data:
library(ggplot2)
library(reshape2)
library(dplyr)
library(grid)
set.seed(33)
dat = data.frame(Subject = 1:10,
Months = sample(4:20, 10, replace=TRUE),
Treated=sample(0:1, 10, replace=TRUE),
Stage = sample(1:4, 10, replace=TRUE),
Continued=sample(0:1, 10, replace=TRUE))
dat = dat %>%
group_by(Subject) %>%
mutate(Complete=sample(c(4:(max(Months)-1),NA), 1,
prob=c(rep(1, length(4:(max(Months)-1))),5), replace=TRUE),
Partial=sample(c(4:(max(Months)-1),NA), 1,
prob=c(rep(1, length(4:(max(Months)-1))),5), replace=TRUE),
Durable=sample(c(-0.5,NA), 1, replace=TRUE))
# Order Subjects by Months
dat$Subject = factor(dat$Subject, levels=dat$Subject[order(dat$Months)])
# Melt part of data frame for adding points to bars
dat.m = melt(dat %>% select(Subject, Months, Complete, Partial, Durable),
id.var=c("Subject","Months"))
Now for the plot:
ggplot(dat, aes(Subject, Months)) +
geom_bar(stat="identity", aes(fill=factor(Stage)), width=0.7) +
geom_point(data=dat.m,
aes(Subject, value, colour=variable, shape=variable), size=4) +
geom_segment(data=dat %>% filter(Continued==1),
aes(x=Subject, xend=Subject, y=Months + 0.1, yend=Months + 1),
pch=15, size=0.8, arrow=arrow(type="closed", length=unit(0.1,"in"))) +
coord_flip() +
scale_fill_manual(values=hcl(seq(15,375,length.out=5)[1:4],100,70)) +
scale_colour_manual(values=c(hcl(seq(15,375,length.out=3)[1:2],100,40),"black")) +
scale_y_continuous(limits=c(-1,20), breaks=0:20) +
labs(fill="Disease Stage", colour="", shape="",
x="Subject Recevied Study Drug") +
theme_bw() +
theme(panel.grid.minor=element_blank(),
panel.grid.major=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank())
Upvotes: 12