Reputation: 2907
Let's say I have a program in which I want to solve equations(something like this)
Number x;
Func fw = x * 4 + x * x;
std::cout << fw(6.0) << "\n\n";
Thus, I'm starting from writing abstract Base class, where I have all what I need to solve this equation.
class Base
{
public:
Base(){};
virtual Base* operator*(Base& x) = 0;
virtual Base* operator*(double x) = 0;
virtual Base* operator+(Base& x) = 0;
};
and class Number
class Number : public Base
{
public:
virtual Base* operator*(Base& x);
virtual Base* operator*(double x);
virtual Base* operator+(Base& x);
};
and class Func with copy constructor(or at least, Ithink that it's a copy constructor)
class Func: public Base
{
Base * func;
public:
Func(Base* other)
{
func = other;
}
Func(Base& other)
{
func = &other;
}
virtual Base* operator*(Base& x){}
virtual Base* operator*(double x){}
virtual Base* operator+(Base&){}
};
So, my problem. My program works for x*x
or for x*4
, but when I try to combine them x*x + x*4
I have a problem.
It's obvious(or it is not) what the problem is.After x*x
my program is returning pointer(Base*) and in my overloaded operators I have only (Base&).
So program can't match any overloaded operator to it.
Here is what CLion shows me binary operator + can't be applied to the expression of type Base* and Base*
So, solution can be to overload operators one more time but with argument(Base*), but I hope there is a better way to solve this problem. Is there?
Upvotes: 1
Views: 97
Reputation:
Yes, there is: write a wrapper class that uses value or reference semantics rather than pointer semantics. For example,
class BaseRep // I've renamed your `Base` class
{
public:
BaseRep(){};
virtual std::unique_ptr<BaseRep> multiply(const BaseRep& x) = 0;
};
class Base
{
std::unique_ptr<BaseRep> ptr;
public:
Base(std::unique_ptr<BaseRep> &&p):ptr(p) {}
BaseRep& rep() { return *ptr; }
const BaseRep& rep() const { return *ptr; }
// and other stuff
};
Base operator*(const Base &x, const Base &y)
{
return Base( x.rep().multiply(y.rep()) );
}
Upvotes: 1
Reputation: 40859
template < size_t Index >
struct placeholder {
template < typename ... Args >
auto operator()(Args ... args) const
{
auto tpl = std::make_tuple(args...);
return get<Index>(tpl);
}
};
placeholder<0> _1;
placeholder<1> _2; // etc...
template < typename T >
struct val
{
T value;
val(T v) : value(v) {}
template < typename ... Args >
auto operator()(Args ... ) const { return value; }
};
template < typename LH, typename RH >
struct plus_operator
{
plus_operator(LH l, RH r) : lh(l), rh(r) {}
LH lh;
RH rh;
template < typename ... Args >
auto operator()(Args ... args) const { return lh(args...) + rh(args...); }
};
template < size_t I, typename T >
auto operator + (placeholder<I> lh, T rh)
{
return plus_operator<placeholder<I>,T>{lh,val<T>{rh}};
}
template < typename T, size_t I >
auto operator + (T lh, placeholder<I> rh) ...
// because this would otherwise be ambiguous...
template < size_t I1, size_t I2 >
auto operator + (placeholder<I1> lh, placeholder<I2> rh) ...
Same same for *, -, /...
auto fun = _1 * 4 + _1 * _1;
auto result = fun(5);
Not tested. No warranty. But this technique is I believe what you want to solve the problem. It's called 'expression templates'.
Oh, and you'll have to override for each possible operator being LH, RH...probably a better way using SFINAE.
Upvotes: 0
Reputation: 69864
all arithmetic operators should return a reference (or a copy), absolutely not a pointer.
Upvotes: 0