Reputation: 2498
I'm trying to figure out the best way to get the largest value in a Spark dataframe column.
Consider the following example:
df = spark.createDataFrame([(1., 4.), (2., 5.), (3., 6.)], ["A", "B"])
df.show()
Which creates:
+---+---+
| A| B|
+---+---+
|1.0|4.0|
|2.0|5.0|
|3.0|6.0|
+---+---+
My goal is to find the largest value in column A (by inspection, this is 3.0). Using PySpark, here are four approaches I can think of:
# Method 1: Use describe()
float(df.describe("A").filter("summary = 'max'").select("A").first().asDict()['A'])
# Method 2: Use SQL
df.registerTempTable("df_table")
spark.sql("SELECT MAX(A) as maxval FROM df_table").first().asDict()['maxval']
# Method 3: Use groupby()
df.groupby().max('A').first().asDict()['max(A)']
# Method 4: Convert to RDD
df.select("A").rdd.max()[0]
Each of the above gives the right answer, but in the absence of a Spark profiling tool I can't tell which is best.
Any ideas from either intuition or empiricism on which of the above methods is most efficient in terms of Spark runtime or resource usage, or whether there is a more direct method than the ones above?
Upvotes: 139
Views: 450095
Reputation: 1056
Max value for a particular column of a dataframe can be achieved by using -
your_max_value = df.agg({"your-column": "max"}).collect()[0][0]
Upvotes: 99
Reputation: 1517
Remark: Spark is intended to work on Big Data - distributed computing. The size of the example DataFrame is very small, so the order of real-life examples can be altered with respect to the small example.
Slowest: Method_1, because .describe("A")
calculates min, max, mean, stddev, and count (5 calculations over the whole column).
Medium: Method_4, because, .rdd
(DF to RDD transformation) slows down the process.
Faster: Method_3 ~ Method_2 ~ Method_5, because the logic is very similar, so Spark's catalyst optimizer follows very similar logic with minimal number of operations (get max of a particular column, collect a single-value dataframe; .asDict()
adds a little extra-time comparing 2, 3 vs. 5)
import pandas as pd
import time
time_dict = {}
dfff = self.spark.createDataFrame([(1., 4.), (2., 5.), (3., 6.)], ["A", "B"])
#-- For bigger/realistic dataframe just uncomment the following 3 lines
#lst = list(np.random.normal(0.0, 100.0, 100000))
#pdf = pd.DataFrame({'A': lst, 'B': lst, 'C': lst, 'D': lst})
#dfff = self.sqlContext.createDataFrame(pdf)
tic1 = int(round(time.time() * 1000))
# Method 1: Use describe()
max_val = float(dfff.describe("A").filter("summary = 'max'").select("A").collect()[0].asDict()['A'])
tac1 = int(round(time.time() * 1000))
time_dict['m1']= tac1 - tic1
print (max_val)
tic2 = int(round(time.time() * 1000))
# Method 2: Use SQL
dfff.registerTempTable("df_table")
max_val = self.sqlContext.sql("SELECT MAX(A) as maxval FROM df_table").collect()[0].asDict()['maxval']
tac2 = int(round(time.time() * 1000))
time_dict['m2']= tac2 - tic2
print (max_val)
tic3 = int(round(time.time() * 1000))
# Method 3: Use groupby()
max_val = dfff.groupby().max('A').collect()[0].asDict()['max(A)']
tac3 = int(round(time.time() * 1000))
time_dict['m3']= tac3 - tic3
print (max_val)
tic4 = int(round(time.time() * 1000))
# Method 4: Convert to RDD
max_val = dfff.select("A").rdd.max()[0]
tac4 = int(round(time.time() * 1000))
time_dict['m4']= tac4 - tic4
print (max_val)
tic5 = int(round(time.time() * 1000))
# Method 5: Use agg()
max_val = dfff.agg({"A": "max"}).collect()[0][0]
tac5 = int(round(time.time() * 1000))
time_dict['m5']= tac5 - tic5
print (max_val)
print time_dict
Result on an edge-node of a cluster in milliseconds (ms):
small DF (ms): {'m1': 7096, 'm2': 205, 'm3': 165, 'm4': 211, 'm5': 180}
bigger DF (ms): {'m1': 10260, 'm2': 452, 'm3': 465, 'm4': 916, 'm5': 373}
Upvotes: 44
Reputation: 8191
To just get the value use any of these
df1.agg({"x": "max"}).collect()[0][0]
df1.agg({"x": "max"}).head()[0]
df1.agg({"x": "max"}).first()[0]
Alternatively we could do these for 'min'
from pyspark.sql.functions import min, max
df1.agg(min("id")).collect()[0][0]
df1.agg(min("id")).head()[0]
df1.agg(min("id")).first()[0]
Upvotes: 5
Reputation: 2033
I used another solution (by @satprem rath) already present in this chain.
To find the min value of age in the dataframe:
df.agg(min("age")).show()
+--------+
|min(age)|
+--------+
| 29|
+--------+
edit: to add more context.
While the above method printed the result, I faced issues when assigning the result to a variable to reuse later.
Hence, to get only the int
value assigned to a variable:
from pyspark.sql.functions import max, min
maxValueA = df.agg(max("A")).collect()[0][0]
maxValueB = df.agg(max("B")).collect()[0][0]
Upvotes: 8
Reputation: 101
First add the import line:
from pyspark.sql.functions import min, max
df.agg(min("age")).show()
+--------+
|min(age)|
+--------+
| 29|
+--------+
df.agg(max("age")).show()
+--------+
|max(age)|
+--------+
| 77|
+--------+
Upvotes: 9
Reputation: 2802
The below example shows how to get the max value in a Spark dataframe column.
from pyspark.sql.functions import max
df = sql_context.createDataFrame([(1., 4.), (2., 5.), (3., 6.)], ["A", "B"])
df.show()
+---+---+
| A| B|
+---+---+
|1.0|4.0|
|2.0|5.0|
|3.0|6.0|
+---+---+
result = df.select([max("A")]).show()
result.show()
+------+
|max(A)|
+------+
| 3.0|
+------+
print result.collect()[0]['max(A)']
3.0
Similarly min, mean, etc. can be calculated as shown below:
from pyspark.sql.functions import mean, min, max
result = df.select([mean("A"), min("A"), max("A")])
result.show()
+------+------+------+
|avg(A)|min(A)|max(A)|
+------+------+------+
| 2.0| 1.0| 3.0|
+------+------+------+
Upvotes: 16
Reputation: 5075
in pyspark you can do this:
max(df.select('ColumnName').rdd.flatMap(lambda x: x).collect())
Upvotes: 1
Reputation: 1
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions._
val testDataFrame = Seq(
(1.0, 4.0), (2.0, 5.0), (3.0, 6.0)
).toDF("A", "B")
val (maxA, maxB) = testDataFrame.select(max("A"), max("B"))
.as[(Double, Double)]
.first()
println(maxA, maxB)
And the result is (3.0,6.0), which is the same to the testDataFrame.agg(max($"A"), max($"B")).collect()(0)
.However, testDataFrame.agg(max($"A"), max($"B")).collect()(0)
returns a List, [3.0,6.0]
Upvotes: 0
Reputation: 41
I believe the best solution will be using head()
Considering your example:
+---+---+
| A| B|
+---+---+
|1.0|4.0|
|2.0|5.0|
|3.0|6.0|
+---+---+
Using agg and max method of python we can get the value as following :
from pyspark.sql.functions import max
df.agg(max(df.A)).head()[0]
This will return:
3.0
Make sure you have the correct import:
from pyspark.sql.functions import max
The max function we use here is the pySPark sql library function, not the default max function of python.
Upvotes: 3
Reputation: 2715
Here is a lazy way of doing this, by just doing compute Statistics:
df.write.mode("overwrite").saveAsTable("sampleStats")
Query = "ANALYZE TABLE sampleStats COMPUTE STATISTICS FOR COLUMNS " + ','.join(df.columns)
spark.sql(Query)
df.describe('ColName')
or
spark.sql("Select * from sampleStats").describe('ColName')
or you can open a hive shell and
describe formatted table sampleStats;
You will see the statistics in the properties - min, max, distinct, nulls, etc.
Upvotes: 0
Reputation: 2169
Another way of doing it:
df.select(f.max(f.col("A")).alias("MAX")).limit(1).collect()[0].MAX
On my data, I got this benchmarks:
df.select(f.max(f.col("A")).alias("MAX")).limit(1).collect()[0].MAX
CPU times: user 2.31 ms, sys: 3.31 ms, total: 5.62 ms
Wall time: 3.7 s
df.select("A").rdd.max()[0]
CPU times: user 23.2 ms, sys: 13.9 ms, total: 37.1 ms
Wall time: 10.3 s
df.agg({"A": "max"}).collect()[0][0]
CPU times: user 0 ns, sys: 4.77 ms, total: 4.77 ms
Wall time: 3.75 s
All of them give the same answer
Upvotes: 27
Reputation: 7772
In case some wonders how to do it using Scala (using Spark 2.0.+), here you go:
scala> df.createOrReplaceTempView("TEMP_DF")
scala> val myMax = spark.sql("SELECT MAX(x) as maxval FROM TEMP_DF").
collect()(0).getInt(0)
scala> print(myMax)
117
Upvotes: 4
Reputation: 1590
>df1.show()
+-----+--------------------+--------+----------+-----------+
|floor| timestamp| uid| x| y|
+-----+--------------------+--------+----------+-----------+
| 1|2014-07-19T16:00:...|600dfbe2| 103.79211|71.50419418|
| 1|2014-07-19T16:00:...|5e7b40e1| 110.33613|100.6828393|
| 1|2014-07-19T16:00:...|285d22e4|110.066315|86.48873585|
| 1|2014-07-19T16:00:...|74d917a1| 103.78499|71.45633073|
>row1 = df1.agg({"x": "max"}).collect()[0]
>print row1
Row(max(x)=110.33613)
>print row1["max(x)"]
110.33613
The answer is almost the same as method3. but seems the "asDict()" in method3 can be removed
Upvotes: 130