Reputation: 11
I wanted to binarize low quality images and found that the existing solutions or programs which are implementations of global and local binarization techniques such as Sauvola’s method, NiBlack's method etc are not off much use.
I did find a few good papers regarding much better methods like the ones given in the papers: 1) http://www.ski.org/sites/default/files/publications/wacv11-display-reader.pdf#cite.adap-binar 2) https://www.jstage.jst.go.jp/article/elex/1/16/1_16_501/_pdf
But I haven't worked on image processing much before and so I wanted to know how I could proceed to implement it and what knowledge I need to implement these algorithms
Upvotes: 0
Views: 1849
Reputation: 20130
I implemented the binarization of the first paper in like 10 minutes (less time than processing the 2nd image) - no guarantee that it's correct, better have a look at the formulas yourself:
int main()
{
//cv::Mat input = cv::imread("../inputData/Lenna.png");
cv::Mat input = cv::imread("../inputData/LongLineColor.jpg");
cv::Mat gray;
cv::cvtColor(input,gray,CV_BGR2GRAY);
cv::Mat binaryImage = cv::Mat::zeros(gray.rows, gray.cols, CV_8UC1);
// binarization:
// TODO: adjust to your application:
int smallWindowSize = 17; // suggested by the paper
int bigWindowSize = 35; // suggested by the paper
// TODO: adjust to your application
double minTau = 10 ;
// create roi relative to (0,0)
cv::Rect roiTemplate1 = cv::Rect(-smallWindowSize/2,-smallWindowSize/2, smallWindowSize, smallWindowSize);
cv::Rect roiTemplate2 = cv::Rect(-bigWindowSize/2,-bigWindowSize/2, bigWindowSize, bigWindowSize);
cv::Rect imgROI = cv::Rect(0,0, gray.cols, gray.rows);
for(int y=0; y<gray.rows; ++y)
{
std::cout << y << std::endl;
for(int x=0; x<gray.cols; ++x)
{
double pixelThreshold = 255;
// small roi
cv::Rect cROIs = roiTemplate1 + cv::Point(x,y);
// test whether ROI is inside the image. Reduce otherwise:
cROIs = cROIs & imgROI;
if(cROIs.width == 0 || cROIs.height == 0)
continue; // ignore this pixel
// large roi
cv::Rect cROIl = roiTemplate2 + cv::Point(x,y);
cROIl = cROIl & imgROI;
if(cROIl.width == 0 || cROIl.height == 0)
continue; // ignore this pixel
cv::Mat subSmall = gray(cROIs);
cv::Mat subLarge = gray(cROIl);
// evaluate subimages:
// standard deviations
double stdDevS =0;
double stdDevL =0;
// mean value
double meanS =0;
double minL =DBL_MAX;
double meanL =0;
// mean of small region
for(int j=0; j<subSmall.rows; ++j)
for(int i=0; i<subSmall.cols; ++i)
{
meanS += subSmall.at<unsigned char>(j,i);
}
meanS = meanS/ (double)(subSmall.cols*subSmall.rows);
// stddev of small region
for(int j=0; j<subSmall.rows; ++j)
for(int i=0; i<subSmall.cols; ++i)
{
double diff = subSmall.at<unsigned char>(j,i) - meanS;
stdDevS += diff*diff;
}
stdDevS = sqrt(stdDevS/(double)(subSmall.cols*subSmall.rows));
// mean and min of large region
for(int j=0; j<subLarge.rows; ++j)
for(int i=0; i<subLarge.cols; ++i)
{
if(subLarge.at<unsigned char>(j,i) < minL)
{
minL = subLarge.at<unsigned char>(j,i);
meanL += subLarge.at<unsigned char>(j,i);
}
}
meanL = meanL/ (double)(subLarge.cols*subLarge.rows);
// stddef of large region
for(int j=0; j<subLarge.rows; ++j)
for(int i=0; i<subLarge.cols; ++i)
{
double diff = subLarge.at<unsigned char>(j,i) - meanL;
stdDevL += diff*diff;
}
stdDevL = sqrt(stdDevL/(double)(subLarge.cols*subLarge.rows));
// formula (2)
double tau = ((meanS - minL) * (1-stdDevS/stdDevL))/2.0;
// minimum
if(tau < minTau) tau = minTau;
// formula (1)
double Threshold = meanS - tau;
// for debugging:
/*
std::cout << " meanS:" << meanS << std::endl;
std::cout << " std S:" << stdDevS << std::endl;
std::cout << " min L:" << minL << std::endl;
std::cout << " meanL:" << meanL << std::endl;
std::cout << " std L:" << stdDevL << std::endl;
std::cout << " threshold: " << Threshold << std::endl;
*/
unsigned char pixelVal = gray.at<unsigned char>(y,x);
if(pixelVal >= Threshold)
binaryImage.at<unsigned char>(y,x) = 255;
else
binaryImage.at<unsigned char>(y,x) = 0;
}
}
cv::imshow("input", input);
cv::imshow("binary", binaryImage);
//cv::imwrite("../outputData/binaryCustom.png", binaryImage);
cv::waitKey(0);
return 0;
}
giving me these results:
and
It is very slow but not optimized or encapsulated at all ;) And the results aren't sooo good imho. Probably you have to adjust the windowSizes to your application/task/objectSize
Upvotes: 1