Reputation: 1236
I have data where the object name is a variable name like EPS
, Profit
etc. (around 25 such distinct objects)
The data is arranged like this :
EPS <- read.table(text = "
Year Microsoft Facebook
2001 12 20
2002 15 23
2003 16 19
", header = TRUE)
Profit <- read.table(text = "
Year Microsoft Facebook
2001 15 36
2002 19 40
2003 25 45
", header = TRUE)
I want output like this :
Year Co_Name EPS Profit
2001 Microsoft 12 15
2002 Microsoft 15 19
2003 Microsoft 16 25
2001 Facebook 20 36
2002 Facebook 23 40
2003 Facebook 19 45
How it can be done? Is there any way to arrange data of all variables as a single object? Data of each variable is imported into R from a csv file like EPS.csv, Profit.csv etc. Is there any way to create loop from importing to arranging data in a desired format?
Upvotes: 1
Views: 144
Reputation: 887501
We can get the datasets in a list
. If we already created 'EPS', 'Profit' as objects, use mget
to get those in a list
, convert to a single data.table with rbindlist
, melt
to long
format and reshape it back to 'wide' with dcast
.
library(data.table)#v1.9.6+
DT <- rbindlist(mget(c('EPS', 'Profit')), idcol=TRUE)
DT1 <- dcast(melt(rbindlist(mget(c('EPS', 'Profit')), idcol=TRUE),
id.var=c('.id', 'Year'), variable.name='Co_Name'),
Year+Co_Name~.id, value.var='value')
DT1
# Year Co_Name EPS Profit
#1: 2001 Microsoft 12 15
#2: 2001 Facebook 20 36
#3: 2002 Microsoft 15 19
#4: 2002 Facebook 23 40
#5: 2003 Microsoft 16 25
#6: 2003 Facebook 19 45
If we need to arrange it, use order
DT1[order(factor(Co_Name, levels=unique(Co_Name)))]
Upvotes: 3
Reputation: 18437
Just for fun we can also achieve the same result using dplyr
, tidyr
and purrr
.
library(dplyr)
library(tidyr)
library(readr)
library(purrr)
list_of_csv <- list.files(path = ".", pattern = ".csv", full.names = TRUE)
file_name <- gsub(".csv", "", basename(list_of_csv))
list_of_csv %>%
map(~ read_csv(.)) %>%
map(~ gather(data = ., key = co_name, value = value, -year)) %>%
reduce(inner_join, by = c("year", "co_name")) %>%
setNames(., c("year", "co_name", file_name))
## Source: local data frame [6 x 4]
## year co_name eps profit
## (int) (fctr) (int) (int)
## 1 2001 microsoft 12 15
## 2 2002 microsoft 15 19
## 3 2003 microsoft 16 25
## 4 2001 facebook 20 36
## 5 2002 facebook 23 40
## 6 2003 facebook 19 45
Upvotes: 3