Reputation: 7400
So I have 2 list of dicts which are as follows:
list1 = [
{'name':'john',
'gender':'male',
'grade': 'third'
},
{'name':'cathy',
'gender':'female',
'grade':'second'
},
]
list2 = [
{'name':'john',
'physics':95,
'chemistry':89
},
{'name':'cathy',
'physics':78,
'chemistry':69
},
]
The output list i need is as follows:
final_list = [
{'name':'john',
'gender':'male',
'grade':'third'
'marks': {'physics':95, 'chemistry': 89}
},
{'name':'cathy',
'gender':'female'
'grade':'second'
'marks': {'physics':78, 'chemistry': 69}
},
]
First i tried with iteration as follows:
final_list = []
for item1 in list1:
for item2 in list2:
if item1['name'] == item2['name']:
temp = dict(item_2)
temp.pop('name')
final_result.append(dict(name=item_1['name'], **temp))
However,this does not give me the desired result..I also tried pandas..limited experience there..
>>> import pandas as pd
>>> df1 = pd.DataFrame(list1)
>>> df2 = pd.DataFrame(list2)
>>> result = pd.merge(df1, df2, on=['name'])
However,i am clueless how to get the data back to the original format i need it in..Any help
Upvotes: 1
Views: 80
Reputation: 180391
Considering you want a list of dicts as output, you can easily do what you want without pandas, use a dict to store all the info using the names as the outer keys, doing one pass over each list not like the O(n^2)
double loops in your own code:
out = {d["name"]: d for d in list1}
for d in list2:
out[d.pop("name")]["marks"] = d
from pprint import pprint as pp
pp(list(out.values()))
Output:
[{'gender': 'female',
'grade': 'second',
'marks': {'chemistry': 69, 'physics': 78},
'name': 'cathy'},
{'gender': 'male',
'grade': 'third',
'marks': {'chemistry': 89, 'physics': 95},
'name': 'john'}]
That reuses the dicts in your lists, if you wanted to create new dicts:
out = {d["name"]: d.copy() for d in list1}
for d in list2:
k = d.pop("name")
out[k]["marks"] = d.copy()
from pprint import pprint as pp
pp(list(out.values()))
The output is the same:
[{'gender': 'female',
'grade': 'second',
'marks': {'chemistry': 69, 'physics': 78},
'name': 'cathy'},
{'gender': 'male',
'grade': 'third',
'marks': {'chemistry': 89, 'physics': 95},
'name': 'john'}]
Upvotes: 1
Reputation: 5414
create a function that will add a marks
column , this columns should contain a dictionary of physics
and chemistry
marks
def create_marks(df):
df['marks'] = { 'chemistry' : df['chemistry'] , 'physics' : df['physics'] }
return df
result_with_marks = result.apply( create_marks , axis = 1)
Out[19]:
gender grade name chemistry physics marks
male third john 89 95 {u'chemistry': 89, u'physics': 95}
female second cathy 69 78 {u'chemistry': 69, u'physics': 78}
then convert it to your desired result as follows
result_with_marks.drop( ['chemistry' , 'physics'], axis = 1).to_dict(orient = 'records')
Out[20]:
[{'gender': 'male',
'grade': 'third',
'marks': {'chemistry': 89L, 'physics': 95L},
'name': 'john'},
{'gender': 'female',
'grade': 'second',
'marks': {'chemistry': 69L, 'physics': 78L},
'name': 'cathy'}]
Upvotes: 1
Reputation: 76917
You can first merge both dataframes
In [144]: df = pd.DataFrame(list1).merge(pd.DataFrame(list2))
Which would look like,
In [145]: df
Out[145]:
gender grade name chemistry physics
0 male third john 89 95
1 female second cathy 69 78
Then create a marks columns as a dict
In [146]: df['marks'] = df.apply(lambda x: [x[['chemistry', 'physics']].to_dict()], axis=1)
In [147]: df
Out[147]:
gender grade name chemistry physics \
0 male third john 89 95
1 female second cathy 69 78
marks
0 [{u'chemistry': 89, u'physics': 95}]
1 [{u'chemistry': 69, u'physics': 78}]
And, use to_dict(orient='records')
method of selected columns of dataframe
In [148]: df[['name', 'gender', 'grade', 'marks']].to_dict(orient='records')
Out[148]:
[{'gender': 'male',
'grade': 'third',
'marks': [{'chemistry': 89L, 'physics': 95L}],
'name': 'john'},
{'gender': 'female',
'grade': 'second',
'marks': [{'chemistry': 69L, 'physics': 78L}],
'name': 'cathy'}]
Upvotes: 3
Reputation: 47780
Using your pandas approach, you can call
result.to_dict(orient='records')
to get it back as a list of dictionaries. It won't put marks
in as a sub-field though, since there's nothing telling it to do that. physics
and chemistry
will just be fields on the same level as the rest.
You may also be having problems because your name
is 'cathy
' in the first list and 'kathy'
in the second, which naturally won't get merged.
Upvotes: 1