Reputation: 23322
I copied some code from nltk
directly into my project (with crediting sources) because my school computers don't allow me to install libraries.
I copied the PorterStemmer
class and StemmerI
interface from here
However, when I run the code, I get
NotImplementedError
Why is this happening?
How I'm running + Stacktrace:
python
>>> from nltk_functions.stemmer import PorterStemmer as ps1
>>> stem1 = ps1()
>>> stem1.stem("operation")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "nltk_functions\stemmer.py", line 13, in stem
"""
NotImplementedError
Here is all the code:
from __future__ import print_function, unicode_literals
import re
class StemmerI(object):
""" A processing interface for removing morphological affixes from
words. This process is known as stemming."""
def stem(self, token):
"""
Strip affixes from the token and return the stem.
:param token: The token that should be stemmed.
:type token: str
"""
raise NotImplementedError()
class PorterStemmer(StemmerI):
## --NLTK--
## Add a module docstring
"""
A word stemmer based on the Porter stemming algorithm.
Porter, M. \"An algorithm for suffix stripping.\"
Program 14.3 (1980): 130-137.
A few minor modifications have been made to Porter's basic
algorithm. See the source code of this module for more
information.
The Porter Stemmer requires that all tokens have string types.
"""
# The main part of the stemming algorithm starts here.
# Note that only lower case sequences are stemmed. Forcing to lower case
# should be done before stem(...) is called.
def __init__(self):
## --NEW--
## This is a table of irregular forms. It is quite short, but still
## reflects the errors actually drawn to Martin Porter's attention over
## a 20 year period!
##
## Extend it as necessary.
##
## The form of the table is:
## {
## "p1" : ["s11","s12","s13", ... ],
## "p2" : ["s21","s22","s23", ... ],
## ...
## "pn" : ["sn1","sn2","sn3", ... ]
## }
##
## String sij is mapped to paradigm form pi, and the main stemming
## process is then bypassed.
irregular_forms = {
"sky" : ["sky", "skies"],
"die" : ["dying"],
"lie" : ["lying"],
"tie" : ["tying"],
"news" : ["news"],
"inning" : ["innings", "inning"],
"outing" : ["outings", "outing"],
"canning" : ["cannings", "canning"],
"howe" : ["howe"],
# --NEW--
"proceed" : ["proceed"],
"exceed" : ["exceed"],
"succeed" : ["succeed"], # Hiranmay Ghosh
}
self.pool = {}
for key in irregular_forms:
for val in irregular_forms[key]:
self.pool[val] = key
self.vowels = frozenset(['a', 'e', 'i', 'o', 'u'])
def _cons(self, word, i):
"""cons(i) -is TRUE <=> b[i] is a consonant."""
if word[i] in self.vowels:
return False
if word[i] == 'y':
if i == 0:
return True
else:
return (not self._cons(word, i - 1))
return True
def _m(self, word, j):
"""m() measures the number of consonant sequences between k0 and j.
if c is a consonant sequence and v a vowel sequence, and <..>
indicates arbitrary presence,
<c><v> gives 0
<c>vc<v> gives 1
<c>vcvc<v> gives 2
<c>vcvcvc<v> gives 3
....
"""
n = 0
i = 0
while True:
if i > j:
return n
if not self._cons(word, i):
break
i = i + 1
i = i + 1
while True:
while True:
if i > j:
return n
if self._cons(word, i):
break
i = i + 1
i = i + 1
n = n + 1
while True:
if i > j:
return n
if not self._cons(word, i):
break
i = i + 1
i = i + 1
def _vowelinstem(self, stem):
"""vowelinstem(stem) is TRUE <=> stem contains a vowel"""
for i in range(len(stem)):
if not self._cons(stem, i):
return True
return False
def _doublec(self, word):
"""doublec(word) is TRUE <=> word ends with a double consonant"""
if len(word) < 2:
return False
if (word[-1] != word[-2]):
return False
return self._cons(word, len(word)-1)
def _cvc(self, word, i):
"""cvc(i) is TRUE <=>
a) ( --NEW--) i == 1, and word[0] word[1] is vowel consonant, or
b) word[i - 2], word[i - 1], word[i] has the form consonant -
vowel - consonant and also if the second c is not w, x or y. this
is used when trying to restore an e at the end of a short word.
e.g.
cav(e), lov(e), hop(e), crim(e), but
snow, box, tray.
"""
if i == 0: return False # i == 0 never happens perhaps
if i == 1: return (not self._cons(word, 0) and self._cons(word, 1))
if not self._cons(word, i) or self._cons(word, i-1) or not self._cons(word, i-2): return False
ch = word[i]
if ch == 'w' or ch == 'x' or ch == 'y':
return False
return True
def _step1ab(self, word):
"""step1ab() gets rid of plurals and -ed or -ing. e.g.
caresses -> caress
ponies -> poni
sties -> sti
tie -> tie (--NEW--: see below)
caress -> caress
cats -> cat
feed -> feed
agreed -> agree
disabled -> disable
matting -> mat
mating -> mate
meeting -> meet
milling -> mill
messing -> mess
meetings -> meet
"""
if word[-1] == 's':
if word.endswith("sses"):
word = word[:-2]
elif word.endswith("ies"):
if len(word) == 4:
word = word[:-1]
# this line extends the original algorithm, so that
# 'flies'->'fli' but 'dies'->'die' etc
else:
word = word[:-2]
elif word[-2] != 's':
word = word[:-1]
ed_or_ing_trimmed = False
if word.endswith("ied"):
if len(word) == 4:
word = word[:-1]
else:
word = word[:-2]
# this line extends the original algorithm, so that
# 'spied'->'spi' but 'died'->'die' etc
elif word.endswith("eed"):
if self._m(word, len(word)-4) > 0:
word = word[:-1]
elif word.endswith("ed") and self._vowelinstem(word[:-2]):
word = word[:-2]
ed_or_ing_trimmed = True
elif word.endswith("ing") and self._vowelinstem(word[:-3]):
word = word[:-3]
ed_or_ing_trimmed = True
if ed_or_ing_trimmed:
if word.endswith("at") or word.endswith("bl") or word.endswith("iz"):
word += 'e'
elif self._doublec(word):
if word[-1] not in ['l', 's', 'z']:
word = word[:-1]
elif (self._m(word, len(word)-1) == 1 and self._cvc(word, len(word)-1)):
word += 'e'
return word
def _step1c(self, word):
"""step1c() turns terminal y to i when there is another vowel in the stem.
--NEW--: This has been modified from the original Porter algorithm so that y->i
is only done when y is preceded by a consonant, but not if the stem
is only a single consonant, i.e.
(*c and not c) Y -> I
So 'happy' -> 'happi', but
'enjoy' -> 'enjoy' etc
This is a much better rule. Formerly 'enjoy'->'enjoi' and 'enjoyment'->
'enjoy'. Step 1c is perhaps done too soon; but with this modification that
no longer really matters.
Also, the removal of the vowelinstem(z) condition means that 'spy', 'fly',
'try' ... stem to 'spi', 'fli', 'tri' and conflate with 'spied', 'tried',
'flies' ...
"""
if word[-1] == 'y' and len(word) > 2 and self._cons(word, len(word) - 2):
return word[:-1] + 'i'
else:
return word
def _step2(self, word):
"""step2() maps double suffices to single ones.
so -ization ( = -ize plus -ation) maps to -ize etc. note that the
string before the suffix must give m() > 0.
"""
if len(word) <= 1: # Only possible at this stage given unusual inputs to stem_word like 'oed'
return word
ch = word[-2]
if ch == 'a':
if word.endswith("ational"):
return word[:-7] + "ate" if self._m(word, len(word)-8) > 0 else word
elif word.endswith("tional"):
return word[:-2] if self._m(word, len(word)-7) > 0 else word
else:
return word
elif ch == 'c':
if word.endswith("enci"):
return word[:-4] + "ence" if self._m(word, len(word)-5) > 0 else word
elif word.endswith("anci"):
return word[:-4] + "ance" if self._m(word, len(word)-5) > 0 else word
else:
return word
elif ch == 'e':
if word.endswith("izer"):
return word[:-1] if self._m(word, len(word)-5) > 0 else word
else:
return word
elif ch == 'l':
if word.endswith("bli"):
return word[:-3] + "ble" if self._m(word, len(word)-4) > 0 else word # --DEPARTURE--
# To match the published algorithm, replace "bli" with "abli" and "ble" with "able"
elif word.endswith("alli"):
# --NEW--
if self._m(word, len(word)-5) > 0:
word = word[:-2]
return self._step2(word)
else:
return word
elif word.endswith("fulli"):
return word[:-2] if self._m(word, len(word)-6) else word # --NEW--
elif word.endswith("entli"):
return word[:-2] if self._m(word, len(word)-6) else word
elif word.endswith("eli"):
return word[:-2] if self._m(word, len(word)-4) else word
elif word.endswith("ousli"):
return word[:-2] if self._m(word, len(word)-6) else word
else:
return word
elif ch == 'o':
if word.endswith("ization"):
return word[:-7] + "ize" if self._m(word, len(word)-8) else word
elif word.endswith("ation"):
return word[:-5] + "ate" if self._m(word, len(word)-6) else word
elif word.endswith("ator"):
return word[:-4] + "ate" if self._m(word, len(word)-5) else word
else:
return word
elif ch == 's':
if word.endswith("alism"):
return word[:-3] if self._m(word, len(word)-6) else word
elif word.endswith("ness"):
if word.endswith("iveness"):
return word[:-4] if self._m(word, len(word)-8) else word
elif word.endswith("fulness"):
return word[:-4] if self._m(word, len(word)-8) else word
elif word.endswith("ousness"):
return word[:-4] if self._m(word, len(word)-8) else word
else:
return word
else:
return word
elif ch == 't':
if word.endswith("aliti"):
return word[:-3] if self._m(word, len(word)-6) else word
elif word.endswith("iviti"):
return word[:-5] + "ive" if self._m(word, len(word)-6) else word
elif word.endswith("biliti"):
return word[:-6] + "ble" if self._m(word, len(word)-7) else word
else:
return word
elif ch == 'g': # --DEPARTURE--
if word.endswith("logi"):
return word[:-1] if self._m(word, len(word) - 4) else word # --NEW-- (Barry Wilkins)
# To match the published algorithm, pass len(word)-5 to _m instead of len(word)-4
else:
return word
else:
return word
def _step3(self, word):
"""step3() deals with -ic-, -full, -ness etc. similar strategy to step2."""
ch = word[-1]
if ch == 'e':
if word.endswith("icate"):
return word[:-3] if self._m(word, len(word)-6) else word
elif word.endswith("ative"):
return word[:-5] if self._m(word, len(word)-6) else word
elif word.endswith("alize"):
return word[:-3] if self._m(word, len(word)-6) else word
else:
return word
elif ch == 'i':
if word.endswith("iciti"):
return word[:-3] if self._m(word, len(word)-6) else word
else:
return word
elif ch == 'l':
if word.endswith("ical"):
return word[:-2] if self._m(word, len(word)-5) else word
elif word.endswith("ful"):
return word[:-3] if self._m(word, len(word)-4) else word
else:
return word
elif ch == 's':
if word.endswith("ness"):
return word[:-4] if self._m(word, len(word)-5) else word
else:
return word
else:
return word
def _step4(self, word):
"""step4() takes off -ant, -ence etc., in context <c>vcvc<v>."""
if len(word) <= 1: # Only possible at this stage given unusual inputs to stem_word like 'oed'
return word
ch = word[-2]
if ch == 'a':
if word.endswith("al"):
return word[:-2] if self._m(word, len(word)-3) > 1 else word
else:
return word
elif ch == 'c':
if word.endswith("ance"):
return word[:-4] if self._m(word, len(word)-5) > 1 else word
elif word.endswith("ence"):
return word[:-4] if self._m(word, len(word)-5) > 1 else word
else:
return word
elif ch == 'e':
if word.endswith("er"):
return word[:-2] if self._m(word, len(word)-3) > 1 else word
else:
return word
elif ch == 'i':
if word.endswith("ic"):
return word[:-2] if self._m(word, len(word)-3) > 1 else word
else:
return word
elif ch == 'l':
if word.endswith("able"):
return word[:-4] if self._m(word, len(word)-5) > 1 else word
elif word.endswith("ible"):
return word[:-4] if self._m(word, len(word)-5) > 1 else word
else:
return word
elif ch == 'n':
if word.endswith("ant"):
return word[:-3] if self._m(word, len(word)-4) > 1 else word
elif word.endswith("ement"):
return word[:-5] if self._m(word, len(word)-6) > 1 else word
elif word.endswith("ment"):
return word[:-4] if self._m(word, len(word)-5) > 1 else word
elif word.endswith("ent"):
return word[:-3] if self._m(word, len(word)-4) > 1 else word
else:
return word
elif ch == 'o':
if word.endswith("sion") or word.endswith("tion"): # slightly different logic to all the other cases
return word[:-3] if self._m(word, len(word)-4) > 1 else word
elif word.endswith("ou"):
return word[:-2] if self._m(word, len(word)-3) > 1 else word
else:
return word
elif ch == 's':
if word.endswith("ism"):
return word[:-3] if self._m(word, len(word)-4) > 1 else word
else:
return word
elif ch == 't':
if word.endswith("ate"):
return word[:-3] if self._m(word, len(word)-4) > 1 else word
elif word.endswith("iti"):
return word[:-3] if self._m(word, len(word)-4) > 1 else word
else:
return word
elif ch == 'u':
if word.endswith("ous"):
return word[:-3] if self._m(word, len(word)-4) > 1 else word
else:
return word
elif ch == 'v':
if word.endswith("ive"):
return word[:-3] if self._m(word, len(word)-4) > 1 else word
else:
return word
elif ch == 'z':
if word.endswith("ize"):
return word[:-3] if self._m(word, len(word)-4) > 1 else word
else:
return word
else:
return word
def _step5(self, word):
"""step5() removes a final -e if m() > 1, and changes -ll to -l if
m() > 1.
"""
if word[-1] == 'e':
a = self._m(word, len(word)-1)
if a > 1 or (a == 1 and not self._cvc(word, len(word)-2)):
word = word[:-1]
if word.endswith('ll') and self._m(word, len(word)-1) > 1:
word = word[:-1]
return word
def stem_word(self, p, i=0, j=None):
"""Returns the stem of p, or, if i and j are given, the stem of p[i:j+1]."""
## --NLTK--
if j is None and i == 0:
word = p
else:
if j is None:
j = len(p) - 1
word = p[i:j+1]
if word in self.pool:
return self.pool[word]
if len(word) <= 2:
return word # --DEPARTURE--
# With this line, strings of length 1 or 2 don't go through the
# stemming process, although no mention is made of this in the
# published algorithm. Remove the line to match the published
# algorithm.
word = self._step1ab(word)
word = self._step1c(word)
word = self._step2(word)
word = self._step3(word)
word = self._step4(word)
word = self._step5(word)
return word
def _adjust_case(self, word, stem):
lower = word.lower()
ret = ""
for x in range(len(stem)):
if lower[x] == stem[x]:
ret += word[x]
else:
ret += stem[x]
return ret
## --NLTK--
## Don't use this procedure; we want to work with individual
## tokens, instead. (commented out the following procedure)
#def stem(self, text):
# parts = re.split("(\W+)", text)
# numWords = (len(parts) + 1)/2
#
# ret = ""
# for i in xrange(numWords):
# word = parts[2 * i]
# separator = ""
# if ((2 * i) + 1) < len(parts):
# separator = parts[(2 * i) + 1]
#
# stem = self.stem_word(string.lower(word), 0, len(word) - 1)
# ret = ret + self.adjust_case(word, stem)
# ret = ret + separator
# return ret
## --NLTK--
## Define a stem() method that implements the StemmerI interface.
def stem(self, word):
print("stem called")
stem = self.stem_word(word.lower(), 0, len(word) - 1)
return self._adjust_case(word, stem)
## --NLTK--
## Add a string representation function
def __repr__(self):
return '<PorterStemmer>'
## --NLTK--
## This test procedure isn't applicable.
#if __name__ == '__main__':
# p = PorterStemmer()
# if len(sys.argv) > 1:
# for f in sys.argv[1:]:
# with open(f, 'r') as infile:
# while 1:
# w = infile.readline()
# if w == '':
# break
# w = w[:-1]
# print(p.stem(w))
##--NLTK--
## Added a demo() function
def demo():
"""
A demonstration of the porter stemmer on a sample from
the Penn Treebank corpus.
"""
from nltk.corpus import treebank
from nltk import stem
stemmer = stem.PorterStemmer()
orig = []
stemmed = []
for item in treebank.files()[:3]:
for (word, tag) in treebank.tagged_words(item):
orig.append(word)
stemmed.append(stemmer.stem(word))
# Convert the results to a string, and word-wrap them.
results = ' '.join(stemmed)
results = re.sub(r"(.{,70})\s", r'\1\n', results+' ').rstrip()
# Convert the original to a string, and word wrap it.
original = ' '.join(orig)
original = re.sub(r"(.{,70})\s", r'\1\n', original+' ').rstrip()
# Print the results.
print('-Original-'.center(70).replace(' ', '*').replace('-', ' '))
print(original)
print('-Results-'.center(70).replace(' ', '*').replace('-', ' '))
print(results)
print('*'*70)
##--NLTK--
Upvotes: 0
Views: 109
Reputation: 23322
I was helped immensely by the previous commenters and answerers.
I got it working by looking at whitespace in Notepad++ (View -> Show Symbol -> Show Whitespace and Tab) and realized that there were no tabs in the the code I copied. It was all space.
So I opened the Find and Replace dialog (CTRL+F) typed (four spaces)
in Find and \t
in the Replace.
After clicking "Replace All" everything works now!
Upvotes: 1
Reputation: 109
My best guess is that some of the lines you copied are not being treated as part of the class due to indentation issues. Try adding a class property definition at the tale end of PorterStemmer
and verify that it appears on the class as a first debugging step.
Upvotes: 1