Reputation: 7951
I'm have a CSV dataset that I want to process using Spark, the second column is of this format:
yyyy-MM-dd hh:mm:ss
I want to group each MM-dd
val days : RDD = sc.textFile(<csv file>)
val partitioned = days.map(row => {
row.split(",")(1).substring(5,10)
}).invertTheMap.groupOrReduceByKey
The result of groupOrReduceByKey
is of form:
("MM-dd" -> (row1, row2, row3, ..., row_n) )
How should I implement invertTheMap
and groupOrReduceByKey
?
I saw this in Python here but I wonder how is it done in Scala?
Upvotes: 1
Views: 639
Reputation: 13346
This should do the trick
val testData = List("a, 1987-09-30",
"a, 2001-09-29",
"b, 2002-09-30")
val input = sc.parallelize(testData)
val grouped = input.map{
row =>
val columns = row.split(",")
(columns(1).substring(6, 11), row)
}.groupByKey()
grouped.foreach(println)
The output is
(09-29,CompactBuffer(a, 2001-09-29))
(09-30,CompactBuffer(a, 1987-09-30, b, 2002-09-30))
Upvotes: 1