grlaer
grlaer

Reputation: 151

Remove whitespace in SQLAlchemy or Pandas

I'm using SQLAlchemy to query data from MSSQL db, then saving as excel file with pandas. I'm looking for something similar to T-SQL's RTRIM in order to remove any trailing white space from my data.

I know how to remove white space from the column headers, but not from the data itself. So I either need to remove the whitespace when querying or while its a pandas data frame, but I do not have any ideas as to how (since most searches retrieve how to remove white space when parsing, not writing data).

My code so far is:

from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import scoped_session,sessionmaker
from sqlalchemy import (Column, Integer, String, Boolean, ForeignKey, DateTime, Sequence, Float)
from sqlalchemy import create_engine
import pandas as pd
import openpyxl


pd.core.format.header_style = None 
pd.core.format.number_format = None 

def data_frame(query, columns):
    def make_row(x):
        return dict([(c, getattr(x, c)) for c in columns]) 
    return pd.DataFrame([make_row(x) for x in query])

engine = create_engine('mssql+pyodbc://u:pass@MyServer/MYDBt?driver=SQL Server', echo=False)
Session = sessionmaker(bind=engine)
session = Session()
Base = declarative_base()

class Tranv(Base):
    __tablename__ = "Transactions"

    part_number = Column(String(20), primary_key=True)
    time_stamp = Column(String(20))
    employee_number = Column(String(6))
    action = Column(String(20)) 

newvarv = session.query(Tranv).filter_by(employee_number='001841').filter_by(time_stamp='2015-10-01 10:49:53.230')

dfx = data_frame(newvarv, [c.name for c in Tranv.__table__.columns])
dfx.columns = dfx.columns.str.strip()
dfx = dfx.rename(columns=lambda x: x.strip())

writer = pd.ExcelWriter('C:\\Users\\grice\\Desktop\\Auto_Scrap_Report\\testy.xlsx')
writer.date_format = None
writer.datetime_format = None

dfx.to_excel(writer, sheet_name='Sheet1', index=False)
writer.save()

Upvotes: 0

Views: 4602

Answers (1)

Yannis P.
Yannis P.

Reputation: 2775

Ok there is posibly a more elegant way but this one worked for me:

In [2]:

df = pd.DataFrame(data={"names": ["John ", "Jack"], "surnames": ["Andrews", " McAllister"]})

In [3]:

df

Out[3]:
    names   surnames
0   John    Andrews
1   Jack    McAllister

2 rows × 2 columns
In [9]:

df = df.apply(lambda x: x.str.strip())

In [10]:

df.loc[0, "names"]

Out[10]:

'John'

Upvotes: 1

Related Questions