Reputation: 697
I have a multidimensional array, initiated as C=np.zeros([20,20,20,20])
. Then I'm trying to assign some values to C via some formula (C(x)=(exp(-|x|^2)
in this case). The following code works but is extremely slow.
it=np.nditer(C, flags=['multi_index'], op_flags=['readwrite']) while not it.finished: diff=np.linalg.norm(np.array(it.multi_index)) it[0]=np.exp(-diff**2) it.iternext()
Can this by done in a faster and possibly more pythonish way?
Upvotes: 3
Views: 94
Reputation: 1287
So it looks like you just wan't to apply your operation to the indices of each element? How about this:
x = np.exp(-np.linalg.norm(np.indices([20,20,20,20]), axis=0)**2)
np.indices is a really slick function. Also related are mgrid and meshgrid for more complex operations. In this case, since you have 4 dimensions, it returns an array with shape (4,20,20,20,20).
And pure numpy is a little faster :)
In [13]: timeit posted_code()
1 loops, best of 3: 843 ms per loop
In [14]: timeit np.exp(-np.linalg.norm(np.indices([20,20,20,20]), axis=0)**2)
100 loops, best of 3: 3.76 ms per loop
And it is exactly the same result:
In [26]: np.all(C == x)
Out[26]: True
Upvotes: 1
Reputation: 221574
Here's one way to do it.
Step #1 Get all combinations corresponding to all indices being calculated with np.array(it.multi_index)
in the code. On this, one can leverage product from itertools
.
Step #2 Perform the L2 norm calculations across all combinations in a vectorized manner.
Step #3 Finally do C(x)=(exp(-|x|^2)
in an elementwise manner.
# Get combinations using itertools.product
combs = np.array(list(product(range(N), repeat=4)))
# Perform L2 norm and elementwise exponential calculations to get final o/p
out = np.exp(-np.sqrt((combs**2).sum(1))**2).reshape(N,N,N,N)
Runtime tests and verify output -
In [42]: def vectorized_app(N):
...: combs = np.array(list(product(range(N), repeat=4)))
...: return np.exp(-np.sqrt((combs**2).sum(1))**2).reshape(N,N,N,N)
...:
...: def original_app(N):
...: C=np.zeros([N,N,N,N])
...: it=np.nditer(C, flags=['multi_index'], op_flags=['readwrite'])
...: while not it.finished:
...: diff_n=np.linalg.norm(np.array(it.multi_index))
...: it[0]=np.exp(-diff_n**2)
...: it.iternext()
...: return C
...:
In [43]: N = 10
In [44]: %timeit original_app(N)
1 loops, best of 3: 288 ms per loop
In [45]: %timeit vectorized_app(N)
100 loops, best of 3: 8.63 ms per loop
In [46]: np.allclose(vectorized_app(N),original_app(N))
Out[46]: True
Upvotes: 2