Reputation: 1411
I have more than 20 columns where I need to run following rule:
df['LAND1'] = df['LAND1'].str.replace('\W+', '')
df['LAND1'] = df['LAND1'].str.lower().astype(str)
df['SEA1'] = df['SEA1'].str.replace('\W+', '')
df['SEA1'] = df['SEA1'].str.lower().astype(str)
df['OCEAN1'] = df['OCEAN1'].str.replace('\W+', '')
df['OCEAN1'] = df['OCEAN1'].str.lower().astype(str)
df['CITY1'] = df['CITY1'].str.replace('\W+', '')
df['CITY1'] = df['CITY1'].str.lower().astype(str)
More same type of code for different Columns how can I minimize my code. Such that I could write less code.
Upvotes: 2
Views: 79
Reputation: 18648
DataFrame.apply
and DataFrame.applymap
can also contract your code :
df=pd.DataFrame({'A':['a','b','c'],'D':['d','e','f'],'G':['g','h','i']})
A D G
0 a d g
1 b e h
2 c f i
Then:
df.apply(pd.Series.replace,args=('d','ddd')).applymap(str.upper)
A D G
0 A DDD G
1 B E H
2 C F I
You can affect and restrict to some columns by selection=['A','D']; df[selection]=df[selection].apply(....)
for example.
Upvotes: 1
Reputation: 26
Melt the data frame, then apply the repalce and to lower function. Pivot the data frame to get back
Upvotes: 0
Reputation: 1260
I hope the df is a dictionary
for i in df.keys():
df[i]=df[i].str.replace('\W+', '')
df[i]=df[i].str.lower().astype(str)
Let me know if it helps you
Upvotes: 0
Reputation: 90929
You can create a list of column names and then iterate through them and apply your logic for them. Example -
columns = ['LAND1','SEA1','OCEAN1','CITY1',...]
for col in columns:
df[col] = (df[col].str.replace('\W+', '')
.str.lower().astype(str))
Demo -
In [17]: df
Out[17]:
LAND1 SEA1
0 Blah!!!Bloh Bleh@@@Blum
1 Blah!!!Bloh Bleh@@@Blum
2 Blah!!!Bloh Bleh@@@Blum
3 Blah!!!Bloh Bleh@@@Blum
4 Blah!!!Bloh Bleh@@@Blum
5 Blah!!!Bloh Bleh@@@Blum
6 Blah!!!Bloh Bleh@@@Blum
7 Blah!!!Bloh Bleh@@@Blum
8 Blah!!!Bloh Bleh@@@Blum
9 Blah!!!Bloh Bleh@@@Blum
In [18]: columns = ['LAND1','SEA1']
In [20]: for col in columns:
....: df[col] = (df[col].str.replace('\W+', '')
....: .str.lower().astype(str))
....:
In [21]: df
Out[21]:
LAND1 SEA1
0 blahbloh blehblum
1 blahbloh blehblum
2 blahbloh blehblum
3 blahbloh blehblum
4 blahbloh blehblum
5 blahbloh blehblum
6 blahbloh blehblum
7 blahbloh blehblum
8 blahbloh blehblum
9 blahbloh blehblum
Upvotes: 4