Reputation: 2927
i need to encrypt and decrypt my password by using PBEWithMD5AndDES JAVA encryption method PBEWithMD5AndDES , JAVA PBEWithMD5AndDES , i need to do the encryption and decryption in swift similar to below code
@implementation CryptoHelper
#pragma mark -
#pragma mark Init Methods
- (id)init
{
if(self = [super init])
{
}
return self;
}
#pragma mark -
#pragma mark String Specific Methods
/**
* Encrypts a string for social blast service.
*
* @param plainString The string to encrypt;
*
* @return NSString The encrypted string.
*/
- (NSString *)encryptString: (NSString *) plainString{
// Convert string to data and encrypt
NSData *data = [self encryptPBEWithMD5AndDESData:[plainString dataUsingEncoding:NSUTF8StringEncoding] password:@"1111"];
// Get encrypted string from data
return [data base64EncodingWithLineLength:1024];
}
/**
* Descrypts a string from social blast service.
*
* @param plainString The string to decrypt;
*
* @return NSString The decrypted string.
*/
- (NSString *)decryptString: (NSString *) encryptedString{
// decrypt the data
NSData * data = [self decryptPBEWithMD5AndDESData:[NSData dataWithBase64EncodedString:encryptedString] password:@"1111"];
// extract and return string
return [NSString stringWithUTF8String:[data bytes]];
}
#pragma mark -
#pragma mark Crypto Methods
- (NSData *)encryptPBEWithMD5AndDESData:(NSData *)inData password:(NSString *)password {
return [self encodePBEWithMD5AndDESData:inData password:password direction:1];
}
- (NSData *)decryptPBEWithMD5AndDESData:(NSData *)inData password:(NSString *)password {
return [self encodePBEWithMD5AndDESData:inData password:password direction:0];
}
- (NSData *)encodePBEWithMD5AndDESData:(NSData *)inData password:(NSString *)password direction:(int)direction
{
NSLog(@"helper data = %@", inData);
static const char gSalt[] =
{
(unsigned char)0xAA, (unsigned char)0xAA, (unsigned char)0xAA, (unsigned char)0xAA,
(unsigned char)0xAA, (unsigned char)0xAA, (unsigned char)0xAA, (unsigned char)0xAA,
(unsigned char)0x00
};
unsigned char *salt = (unsigned char *)gSalt;
int saltLen = strlen(gSalt);
int iterations = 15;
EVP_CIPHER_CTX cipherCtx;
unsigned char *mResults; // allocated storage of results
int mResultsLen = 0;
const char *cPassword = [password UTF8String];
unsigned char *mData = (unsigned char *)[inData bytes];
int mDataLen = [inData length];
SSLeay_add_all_algorithms();
X509_ALGOR *algorithm = PKCS5_pbe_set(NID_pbeWithMD5AndDES_CBC,
iterations, salt, saltLen);
memset(&cipherCtx, 0, sizeof(cipherCtx));
if (algorithm != NULL)
{
EVP_CIPHER_CTX_init(&(cipherCtx));
if (EVP_PBE_CipherInit(algorithm->algorithm, cPassword, strlen(cPassword),
algorithm->parameter, &(cipherCtx), direction))
{
EVP_CIPHER_CTX_set_padding(&cipherCtx, 1);
int blockSize = EVP_CIPHER_CTX_block_size(&cipherCtx);
int allocLen = mDataLen + blockSize + 1; // plus 1 for null terminator on decrypt
mResults = (unsigned char *)OPENSSL_malloc(allocLen);
unsigned char *in_bytes = mData;
int inLen = mDataLen;
unsigned char *out_bytes = mResults;
int outLen = 0;
int outLenPart1 = 0;
if (EVP_CipherUpdate(&(cipherCtx), out_bytes, &outLenPart1, in_bytes, inLen))
{
out_bytes += outLenPart1;
int outLenPart2 = 0;
if (EVP_CipherFinal(&(cipherCtx), out_bytes, &outLenPart2))
{
outLen += outLenPart1 + outLenPart2;
mResults[outLen] = 0;
mResultsLen = outLen;
}
} else {
unsigned long err = ERR_get_error();
ERR_load_crypto_strings();
ERR_load_ERR_strings();
char errbuff[256];
errbuff[0] = 0;
ERR_error_string_n(err, errbuff, sizeof(errbuff));
NSLog(@"OpenSLL ERROR:\n\tlib:%s\n\tfunction:%s\n\treason:%s\n",
ERR_lib_error_string(err),
ERR_func_error_string(err),
ERR_reason_error_string(err));
ERR_free_strings();
}
NSData *encryptedData = [NSData dataWithBytes:mResults length:mResultsLen]; //(NSData *)encr_buf;
//NSLog(@"encryption result: %@\n", [encryptedData base64EncodingWithLineLength:1024]);
EVP_cleanup();
return encryptedData;
}
}
EVP_cleanup();
return nil;
}
@end
Upvotes: 0
Views: 1898
Reputation: 112865
PBEWithMD5AndDES means encrypting some data using a key derivation function such as PBKDF2 (Password Based Key Derivation Function) using the MD5 (Message Digest) hash function and an encryption method of DES (Data Encryption Standard).
This can easily be done in iOS with Swift using Common Crypto.
But it all that is rather old and today's Best Practice would use PBBKDF2 with SHA in place of MD5 and AES in place of DES. MD5 and DES are extremely week and should not be used in new work.
If you do not need to interoperate with an existing encrypted files you can use RNCryptor. Also see Using RNCryptor Swift
If you need to interoperate you can piece together a matching scheme using Common Crypto. If you need to go this way add more details to the question including sample existing code and hex dumps of all inputs and outputs along with al input parameters and your Swift attempt code.
Password Based Key Derivation 2 (Swift 3+)
Password Based Key Derivation can be used both for deriving an encryption key from password text and saving a password for authentication purposes.
There are several hash algorithms that can be used including SHA1, SHA256, SHA512 which are provided by this example code.
The rounds parameter is used to make the calculation slow so that an attacker will have to spend substantial time on each attempt. Typical delay values fall in the 100ms to 500ms, shorter values can be used if there is unacceptable performance.
This example requires Common Crypto
It is necessary to have a bridging header to the project:
#import <CommonCrypto/CommonCrypto.h>
Add the Security.framework
to the project.
Parameters:
password password String
salt salt Data
keyByteCount number of key bytes to generate
rounds Iteration rounds
returns Derived key
func pbkdf2SHA1(password: String, salt: Data, keyByteCount: Int, rounds: Int) -> Data? {
return pbkdf2(hash:CCPBKDFAlgorithm(kCCPRFHmacAlgSHA1), password:password, salt:salt, keyByteCount:keyByteCount, rounds:rounds)
}
func pbkdf2SHA256(password: String, salt: Data, keyByteCount: Int, rounds: Int) -> Data? {
return pbkdf2(hash:CCPBKDFAlgorithm(kCCPRFHmacAlgSHA256), password:password, salt:salt, keyByteCount:keyByteCount, rounds:rounds)
}
func pbkdf2SHA512(password: String, salt: Data, keyByteCount: Int, rounds: Int) -> Data? {
return pbkdf2(hash:CCPBKDFAlgorithm(kCCPRFHmacAlgSHA512), password:password, salt:salt, keyByteCount:keyByteCount, rounds:rounds)
}
func pbkdf2(hash :CCPBKDFAlgorithm, password: String, salt: Data, keyByteCount: Int, rounds: Int) -> Data? {
let passwordData = password.data(using:String.Encoding.utf8)!
var derivedKeyData = Data(repeating:0, count:keyByteCount)
let derivationStatus = derivedKeyData.withUnsafeMutableBytes {derivedKeyBytes in
salt.withUnsafeBytes { saltBytes in
CCKeyDerivationPBKDF(
CCPBKDFAlgorithm(kCCPBKDF2),
password, passwordData.count,
saltBytes, salt.count,
hash,
UInt32(rounds),
derivedKeyBytes, derivedKeyData.count)
}
}
if (derivationStatus != 0) {
print("Error: \(derivationStatus)")
return nil;
}
return derivedKeyData
}
Example usage:
let password = "password"
//let salt = "saltData".data(using: String.Encoding.utf8)!
let salt = Data(bytes: [0x73, 0x61, 0x6c, 0x74, 0x44, 0x61, 0x74, 0x61])
let keyByteCount = 16
let rounds = 100000
let derivedKey = pbkdf2SHA1(password:password, salt:salt, keyByteCount:keyByteCount, rounds:rounds)
print("derivedKey (SHA1): \(derivedKey! as NSData)")
Example Output:
derivedKey (SHA1): <6b9d4fa3 0385d128 f6d196ee 3f1d6dbf>
AES encryption in CBC mode with a random IV (Swift 3+)
The iv is prefixed to the encrypted data
aesCBC128Encrypt
will create a random IV and prefixed to the encrypted code.
aesCBC128Decrypt
will use the prefixed IV during decryption.
Inputs are the data and key are Data objects. If an encoded form such as Base64 if required convert to and/or from in the calling method.
The key should be exactly 128-bits (16-bytes), 192-bits (24-bytes) or 256-bits (32-bytes) in length. If another key size is used an error will be thrown.
PKCS#7 padding is set by default.
This example requires Common Crypto
It is necessary to have a bridging header to the project:
#import <CommonCrypto/CommonCrypto.h>
Add the Security.framework
to the project.
This is example, not production code.
enum AESError: Error {
case KeyError((String, Int))
case IVError((String, Int))
case CryptorError((String, Int))
}
// The iv is prefixed to the encrypted data
func aesCBCEncrypt(data:Data, keyData:Data) throws -> Data {
let keyLength = keyData.count
let validKeyLengths = [kCCKeySizeAES128, kCCKeySizeAES192, kCCKeySizeAES256]
if (validKeyLengths.contains(keyLength) == false) {
throw AESError.KeyError(("Invalid key length", keyLength))
}
let ivSize = kCCBlockSizeAES128;
let cryptLength = size_t(ivSize + data.count + kCCBlockSizeAES128)
var cryptData = Data(count:cryptLength)
let status = cryptData.withUnsafeMutableBytes {ivBytes in
SecRandomCopyBytes(kSecRandomDefault, kCCBlockSizeAES128, ivBytes)
}
if (status != 0) {
throw AESError.IVError(("IV generation failed", Int(status)))
}
var numBytesEncrypted :size_t = 0
let options = CCOptions(kCCOptionPKCS7Padding)
let cryptStatus = cryptData.withUnsafeMutableBytes {cryptBytes in
data.withUnsafeBytes {dataBytes in
keyData.withUnsafeBytes {keyBytes in
CCCrypt(CCOperation(kCCEncrypt),
CCAlgorithm(kCCAlgorithmAES),
options,
keyBytes, keyLength,
cryptBytes,
dataBytes, data.count,
cryptBytes+kCCBlockSizeAES128, cryptLength,
&numBytesEncrypted)
}
}
}
if UInt32(cryptStatus) == UInt32(kCCSuccess) {
cryptData.count = numBytesEncrypted + ivSize
}
else {
throw AESError.CryptorError(("Encryption failed", Int(cryptStatus)))
}
return cryptData;
}
// The iv is prefixed to the encrypted data
func aesCBCDecrypt(data:Data, keyData:Data) throws -> Data? {
let keyLength = keyData.count
let validKeyLengths = [kCCKeySizeAES128, kCCKeySizeAES192, kCCKeySizeAES256]
if (validKeyLengths.contains(keyLength) == false) {
throw AESError.KeyError(("Invalid key length", keyLength))
}
let ivSize = kCCBlockSizeAES128;
let clearLength = size_t(data.count - ivSize)
var clearData = Data(count:clearLength)
var numBytesDecrypted :size_t = 0
let options = CCOptions(kCCOptionPKCS7Padding)
let cryptStatus = clearData.withUnsafeMutableBytes {cryptBytes in
data.withUnsafeBytes {dataBytes in
keyData.withUnsafeBytes {keyBytes in
CCCrypt(CCOperation(kCCDecrypt),
CCAlgorithm(kCCAlgorithmAES128),
options,
keyBytes, keyLength,
dataBytes,
dataBytes+kCCBlockSizeAES128, clearLength,
cryptBytes, clearLength,
&numBytesDecrypted)
}
}
}
if UInt32(cryptStatus) == UInt32(kCCSuccess) {
clearData.count = numBytesDecrypted
}
else {
throw AESError.CryptorError(("Decryption failed", Int(cryptStatus)))
}
return clearData;
}
Example usage:
let clearData = "clearData0123456".data(using:String.Encoding.utf8)!
let keyData = "keyData890123456".data(using:String.Encoding.utf8)!
print("clearData: \(clearData as NSData)")
print("keyData: \(keyData as NSData)")
var cryptData :Data?
do {
cryptData = try aesCBCEncrypt(data:clearData, keyData:keyData)
print("cryptData: \(cryptData! as NSData)")
}
catch (let status) {
print("Error aesCBCEncrypt: \(status)")
}
let decryptData :Data?
do {
let decryptData = try aesCBCDecrypt(data:cryptData!, keyData:keyData)
print("decryptData: \(decryptData! as NSData)")
}
catch (let status) {
print("Error aesCBCDecrypt: \(status)")
}
Example Output:
clearData: <636c6561 72446174 61303132 33343536>
keyData: <6b657944 61746138 39303132 33343536>
cryptData: <92c57393 f454d959 5a4d158f 6e1cd3e7 77986ee9 b2970f49 2bafcf1a 8ee9d51a bde49c31 d7780256 71837a61 60fa4be0>
decryptData: <636c6561 72446174 61303132 33343536>
Notes:
One typical problem with CBC mode example code is that it leaves the creation and sharing of the random IV to the user. This example includes generation of the IV, prefixed the encrypted data and uses the prefixed IV during decryption. This frees the casual user from the details that are necessary for CBC mode.
For security the encrypted data also should have authentication, this example code does not provide that in order to be small and allow better interoperability for other platforms.
Also missing is key derivation of the key from a password, it is suggested that PBKDF2 be used is text passwords are used as keying material.
For robust production ready multi-platform encryption code see RNCryptor.
Upvotes: 3