Reputation: 11
hi i want to detect fingertips point and valleypoint of hand by using hough transform.Simply the Question is what is the [H,theta,rho]=hough(BW) is good for extract these point.
the image is here: https://www.dropbox.com/sh/n1lz7b5eedzbui7/AADwy5O1l7sWf5aOx7KWAmhOa?dl=0
tnx
Upvotes: 0
Views: 106
Reputation: 4113
Another simple technique you might consider is to compare the straight line distance between two points on your hand line to the distance between those two points along the perimeter (geodesic distance). For this you would need an ordered list of points along the perimeter.
Along regions of high curvature, the straight line distance between two points will be smaller than the number of pixels between those two points along the perimeter.
For example, you could check perimeter pixels separate by 10 pixels. That is, you would search through the list and compare the point at index N and the point index N+10. (You'll need to loop back around to the beginning of the list as you approach the end.) If the straight line distance between these two points is nearly 10 pixels as well, then you know those points lie on a straight section of the perimeter. If the straight line distance is much smaller than 10, then you know the perimeter curves in some fashion between those points. Whether you check pixels that are 5, 10, 20, or 30 items apart in the list will depend on the resolution of your image and the curves you're looking for.
This technique is useful because it's simple and quick to implement. Maybe it would work well enough for your needs.
Yet another way: simplify the outline to small line segments, and then you can calculate the line-line angle between adjacent segments. To simplify the curves, implement the Ramer-Douglas-Puecker algorithm. A little experimentation will reveal what parameter settings will work for your application.
https://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm
Finally, you could look into piecewise curve fitting: a curve would be fitted to small segments of the outline. This can get very complicated, and researchers continue to find ways to decompose complex figures into a limited number of more basic shapes or curves. I recommend trying the simplest technique and then only adding complexity if you need it.
Upvotes: 0
Reputation: 2179
The standard hough transformation is just for detecting straight lines. Not more and not less. The Matlab function hough
(please see here) returns the so-called hough space H
, a parametric space which is used to find these lines and the parametric representation of each line: rho = x*cos(theta) + y*sin(theta)
.
You will have to do more than this to detect your desired points. Since your fingers usually won't consist of straight lines, I think you should think of something else anyway, e.g. if you can assume such a perfect curve as the one in your image maybe this is interesting for you.
Upvotes: 1