Reputation: 1374
I have list of dates and I want to generate a bar chart with matplotlib in python.
2007-05-06
2007-05-11
2007-06-01
2007-06-04
2007-06-06
2007-09-01
2007-10-06
2007-11-06
2007-11-07
…
And I want to provide this two type of bar char
I can use this code but I'm searching for more efficient code because as you can see I have years between 2007 and 2012 and sometimes this range can be wider
def plot():
#--- the two samples ---
samples1 = [1, 1, 1, 3, 2, 5, 1, 10, 10, 8]
samples2 = [6, 6, 6, 1, 2, 3, 9, 12 ]
samples3 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 11, 12]
N = 12 # number of bins
hist1 = np.array([0] * N )
hist2 = np.array([0] * N )
hist3 = np.array([0] * N )
#--- create two histogram. Values of 1 go in Bin 0 ---
for x in samples1:
hist1[x-1] += 1
for x in samples2:
hist2[x-1] += 1
for x in samples3:
hist3[x-1] += 1
#--- display the bar-graph ---
width = 1
p1 = plt.bar( np.arange(0,N)+0.5, hist1, width, color='#9932cc' )
p2 = plt.bar( np.arange(0,N)+0.5, hist2, width, color='#ffa500', bottom=hist1 )
p3 = plt.bar( np.arange(0,N)+0.5, hist3, width, color='#d2691e', bottom=hist1+hist2 )
plt.legend( (p1[0], p2[0], p3[0]), ( 'hist1', 'hist2', 'hist3' ) )
plt.xlabel( 'Bins' )
plt.ylabel( 'Count' )
#plt.axis([1, 46, 0, 6])
plt.xticks( np.arange( 1,N+1 ) )
plt.axis( [width/2.0, N+width/2.0, 0, max( hist1+hist2+hist3)] )
plt.show()
Can you help me to generate this kind of chart !?
Thank you
Upvotes: 2
Views: 2220
Reputation: 25478
The two plots are generated in a very similar way, so I'll do the first one only. You need to loop over the months, and to get a stacked bar-chart set the bottom
of each month's bar to the cumulative sum of the previous months' values for each year:
import numpy as np
import matplotlib.pyplot as plt
months = ('Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun',
'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec')
# Some random data for nyears from minyear
nyears = 8
nmonths = len(months)
minyear = 2005
monthly_counts = np.random.randint(low=2, high=15, size=(nyears,nmonths))
fig, ax = plt.subplots()
ind = np.arange(nyears)
width = 0.45
# Random colors for the months
c = np.random.rand(nmonths,3,1)
p = []
for imonth in range(nmonths):
p.append(ax.bar(ind, monthly_counts[:,imonth], width,
bottom=np.sum(monthly_counts[:,:imonth], axis=1),
color=c[imonth], alpha=0.8)
)
# Set x axis ticks and labels
ax.set_xticks(ind + width/2)
ax.set_xticklabels([str(minyear+i) for i in ind])
# Locate legend outside axes plot area
box = ax.get_position()
ax.set_position([box.x0, box.y0, box.width * 0.8, box.height])
ax.legend([pl[0] for pl in p], months, loc='center left', bbox_to_anchor=(1, 0.5))
plt.show()
Upvotes: 2
Reputation: 13206
You can use numpy
histogram
to get the data in bar format directly, which should be faster than looping in python. As a minimal example based on your data above,
import numpy as np
import matplotlib.pyplot as plt
#--- the two samples ---
samples1 = [1, 1, 1, 3, 2, 5, 1, 10, 10, 8]
samples2 = [6, 6, 6, 1, 2, 3, 9, 12 ]
samples3 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 11, 12]
N = 12 # number of bins
hist1 = np.array([0] * N )
hist2 = np.array([0] * N )
hist3 = np.array([0] * N )
#--- create two histogram. Values of 1 go in Bin 0 ---
hist1, n = np.histogram(samples1,N)
hist2, n = np.histogram(samples2,N)
hist3, n = np.histogram(samples3,N)
#--- display the bar-graph ---
width = 1
p1 = plt.bar( np.arange(0,N)+0.5, hist1, width, color='#9932cc' )
p2 = plt.bar( np.arange(0,N)+0.5, hist2, width, color='#ffa500', bottom=hist1 )
p3 = plt.bar( np.arange(0,N)+0.5, hist3, width, color='#d2691e', bottom=hist1+hist2 )
plt.legend( (p1[0], p2[0], p3[0]), ( '2010', '2011', '2012' ) )
plt.xlabel( 'Bins' )
plt.ylabel( 'Count' )
import datetime
months = [((datetime.date(2010, i, 1).strftime('%B'))[:3]) for i in range(1,13)]
plt.xticks( np.arange( 1,N+1 ),months )
plt.axis( [width/2.0, N+width/2.0, 0, max( hist1+hist2+hist3)] )
plt.show()
Upvotes: 3