Reputation: 8044
I am trying to produce a sankey diagram in R, which is also referred as a river plot. I've seen this question Sankey Diagrams in R? where a broad variaty of packages producing sankey diagrams are listed. Since I have input data and know different tools/packages I can produce such diagram BUT my euqestion is: how can I prepare input data for such?
Let's assume we would like to present how users have migrated between various states over 10 days and have start data set like the one below:
data.frame(userID = 1:100,
day1_state = sample(letters[1:8], replace = TRUE, size = 100),
day2_state = sample(letters[1:8], replace = TRUE, size = 100),
day3_state = sample(letters[1:8], replace = TRUE, size = 100),
day4_state = sample(letters[1:8], replace = TRUE, size = 100),
day5_state = sample(letters[1:8], replace = TRUE, size = 100),
day6_state = sample(letters[1:8], replace = TRUE, size = 100),
day7_state = sample(letters[1:8], replace = TRUE, size = 100),
day8_state = sample(letters[1:8], replace = TRUE, size = 100),
day9_state = sample(letters[1:8], replace = TRUE, size = 100),
day10_state = sample(letters[1:8], replace = TRUE, size = 100)
) -> dt
Now if one would like to create a sankey diagram with networkD3
package how should one tranform this dt
data.frame into required input
so that we would have input like from this example
library(networkD3)
URL <- paste0(
"https://cdn.rawgit.com/christophergandrud/networkD3/",
"master/JSONdata/energy.json")
Energy <- jsonlite::fromJSON(URL)
# Plot
sankeyNetwork(Links = Energy$links, Nodes = Energy$nodes, Source = "source",
Target = "target", Value = "value", NodeID = "name",
units = "TWh", fontSize = 12, nodeWidth = 30)
EDIT
I have found such script which prepares data in other situation and reproduced it so I assume it might be closed now:
https://github.com/mi2-warsaw/JakOniGlosowali/blob/master/sankey/sankey.R
Upvotes: 5
Views: 3255
Reputation: 61
Seven years old but still worth an update
Here is something I wrote that turns wide data into sankey compatible.
Anyone using it will need to do a little editing though, the sankey_pairs list in the function will need to be edited to have the sequential / chained pairs of columns in your data.
This function makes a whole chart but anyone can take what they need from it.
sankey_example <-
expand(
tibble(),
x = sample(c('a', 'b', 'c'), size = 10, replace = TRUE),
y = sample(c('j', 'k', 'l'), size = 10, replace = TRUE),
z = sample(c('q', 'r', 's'), size = 10, replace = TRUE)
) |>
mutate(value = round(runif(n = n(), 0, 100)))
create_sankey <- function(data_var){
sankey_pairs <-
list(
c("x", "y"),
c("y", "z"),
)
custSankey_transformed <-
map_dfr(sankey_pairs, function(col_var){
data_var |>
group_by(
source = !!sym(col_var[[1]]),
target = !!sym(col_var[[2]])
) |>
summarise(value = sum(value, na.rm = TRUE), .groups = 'drop')
})
Sankey_nodes <- tibble(name = unique(c(Sankey_transformed$source, Sankey_transformed$target)))
Sankey_transformed$IDsource <- match(Sankey_transformed$source, Sankey_nodes$name)-1
Sankey_transformed$IDtarget <- match(Sankey_transformed$target, Sankey_nodes$name)-1
out_sankeyNetwork <-
sankeyNetwork(
Links = Sankey_transformed,
Nodes = Sankey_nodes,
Source = "IDsource",
Target = "IDtarget",
Value = "value",
NodeID = "name",
sinksRight= FALSE,
fontSize = 14
)
return(out_sankeyNetwork)
}
create_sankey(sankey_example)
Upvotes: 0
Reputation: 144
I asked a similar question while ago. And I guess I better post it here how it can be done with the tidyverse
magic.
library(ggplot2)
library(ggalluvial)
library(tidyr)
library(dplyr)
library(stringr)
# The actual data preperation happens here
dt_new <- dt %>%
gather(day, state, -userID) %>% # Long format
mutate(day = str_match(day, "[0-9]+")[,1]) %>% # Get the numbers
mutate(day = as.integer(day), # Convert to proper data types
state = as.factor(state))
Here is how the data dt_new
looks like
userID day state
1 1 1 d
2 2 1 d
3 3 1 g
4 4 1 a
5 5 1 a
6 6 1 d
7 7 1 d
8 8 1 b
9 9 1 d
10 10 1 e
...
Now plotting the Sankey plot:
ggplot(dt_new,
aes(x = day, stratum = state, alluvium = userID, fill = state, label = state)) +
geom_stratum() +
geom_text(stat = "stratum") +
geom_flow()
Upvotes: 2
Reputation: 8044
I have found such script which prepares data in other situation and reproduced it so I assume it might be closed now:
https://github.com/mi2-warsaw/JakOniGlosowali/blob/master/sankey/sankey.R
Then this code generates such sankey diagram for mentioned in question data.frame
fixtable <- function(...) {
tab <- table(...)
if (substr(colnames(tab)[1],1,1) == "_" &
substr(rownames(tab)[1],1,1) == "_") {
tab2 <- tab
colnames(tab2) <- sapply(strsplit(colnames(tab2), split=" "), `[`, 1)
rownames(tab2) <- sapply(strsplit(rownames(tab2), split=" "), `[`, 1)
tab2[1,1] <- 0
# mandat w klubie
for (par in names(which(tab2[1,] > 0))) {
delta = min(tab2[par, 1], tab2[1, par])
tab2[par, par] = tab2[par, par] + delta
tab2[1, par] = tab2[1, par] - delta
tab2[par, 1] = tab2[par, 1] - delta
}
# przechodzi przez niezalezy
for (par in names(which(tab2[1,] > 0))) {
tab2["niez.", par] = tab2["niez.", par] + tab2[1, par]
tab2[1, par] = 0
}
for (par in names(which(tab2[,1] > 0))) {
tab2[par, "niez."] = tab2[par, "niez."] + tab2[par, 1]
tab2[par, 1] = 0
}
tab[] <- tab2[]
}
tab
}
flow2 <- rbind(
data.frame(fixtable(z = paste0(dat$day1_state, " day1"), do = paste0(dat$day2_state, " day2"))),
data.frame(fixtable(z = paste0(dat$day2_state, " day2"), do = paste0(dat$day3_state, " day3"))),
data.frame(fixtable(z = paste0(dat$day3_state, " day3"), do = paste0(dat$day4_state, " day4"))),
data.frame(fixtable(z = paste0(dat$day4_state, " day4"), do = paste0(dat$day5_state, " day5"))),
data.frame(fixtable(z = paste0(dat$day5_state, " day5"), do = paste0(dat$day6_state, " day6"))),
data.frame(fixtable(z = paste0(dat$day6_state, " day6"), do = paste0(dat$day7_state, " day7"))),
data.frame(fixtable(z = paste0(dat$day7_state, " day7"), do = paste0(dat$day8_state, " day8"))),
data.frame(fixtable(z = paste0(dat$day8_state, " day8"), do = paste0(dat$day9_state, " day9"))),
data.frame(fixtable(z = paste0(dat$day9_state, " day9"), do = paste0(dat$day10_state, " day10"))))
flow2 <- flow2[flow2[,3] > 0,]
nodes2 <- data.frame(name=unique(c(levels(factor(flow2[,1])), levels(factor(flow2[,2])))))
nam2 <- seq_along(nodes2[,1])-1
names(nam2) <- nodes2[,1]
links2 <- data.frame(source = nam2[as.character(flow2[,1])],
target = nam2[as.character(flow2[,2])],
value = flow2[,3])
sankeyNetwork(Links = links, Nodes = nodes,
Source = "source", Target = "target",
Value = "value", NodeID = "name",
fontFamily = "Arial", fontSize = 12, nodeWidth = 40,
colourScale = "d3.scale.category20()")
Upvotes: 2