Reputation: 972
I tried creating a function for Ensemble of Ensemble modelling:
library(foreach)
library(randomForest)
set.seed(10)
Y<-round(runif(1000))
x1<-c(1:1000)*runif(1000,min=0,max=2)
x2<-c(1:1000)*runif(1000,min=0,max=2)
x3<-c(1:1000)*runif(1000,min=0,max=2)
all_data<-data.frame(Y,x1,x2,x3)
bagging = function(dataFile, length_divisor = 4, iterations = 100)
{
fit = list()
predictions = foreach(m = 1 : iterations, .combine = cbind) %do%
{
dataFile$Y = as.factor(dataFile$Y)
rf_fit = randomForest(Y ~ ., data = dataFile, ntree = 100)
fit[[m]] = rf_fit
rf_fit$votes[,2]
}
rowMeans(predictions)
return(list(formula = as.formula("Y ~ ."), trees = fit, ntree = 100, class = dataFile$Y, votes = predictions))
}
final_model = bagging(all_data)
predict(final_model, TestData) # It says predict doesn't support final_model object
# Error in UseMethod("predict") : no applicable method for 'predict' applied to an object of class "list"
It says -
Error in UseMethod("predict") : no applicable method for 'predict' applied to an object of class "list".
I need the above function bagging
to return an aggregated model object so that I can predict on new data set.
Upvotes: 1
Views: 333
Reputation: 206253
Your bagging
function just returns an arbitrary list. Predict looks to the class of the first parameter to know "the right thing" to do. I assume you want to predict from the randomForest objects stored inside the list? You can loop over your list with Map()
. For example
Map(function(x) predict(x, TestData), final_model$trees)
(untested since you didn't seem to provide TestData
)
Upvotes: 0