Reputation: 1169
I have two numpy arrays of integers, both of length several hundred million. Within each array values are unique, and each is initially unsorted.
I would like the indices to each that yield their sorted intersection. For example:
x = np.array([4, 1, 10, 5, 8, 13, 11])
y = np.array([20, 5, 4, 9, 11, 7, 25])
Then the sorted intersection of these is [4, 5, 11]
, and so we want the indices that turn each of x and y into that array, so we want it to return:
mx = np.array([0, 3, 6])
my = np.array([2, 1, 4])
since then x[mx] == y[my] == np.intersect1d(x, y)
The only solution we have so far involves three different argsorts, so it seems that is unlikely to be optimal.
Each value represents a galaxy, in case that makes the problem more fun.
Upvotes: 8
Views: 2249
Reputation: 74152
For a pure numpy solution you could do something like this:
Use np.unique
to get the unique values and corresponding indices in x
and y
separately:
# sorted unique values in x and y and the indices corresponding to their first
# occurrences, such that u_x == x[u_idx_x]
u_x, u_idx_x = np.unique(x, return_index=True)
u_y, u_idx_y = np.unique(y, return_index=True)
Find the intersection of the unique values using np.intersect1d
:
# we can assume_unique, which can be faster for large arrays
i_xy = np.intersect1d(u_x, u_y, assume_unique=True)
Finally, use np.in1d
to select only the indices that correspond to unique values in x
or y
that also happen to be in the intersection of x
and y
:
# it is also safe to assume_unique here
i_idx_x = u_idx_x[np.in1d(u_x, i_xy, assume_unique=True)]
i_idx_y = u_idx_y[np.in1d(u_y, i_xy, assume_unique=True)]
To pull all that together into a single function:
def intersect_indices(x, y):
u_x, u_idx_x = np.unique(x, return_index=True)
u_y, u_idx_y = np.unique(y, return_index=True)
i_xy = np.intersect1d(u_x, u_y, assume_unique=True)
i_idx_x = u_idx_x[np.in1d(u_x, i_xy, assume_unique=True)]
i_idx_y = u_idx_y[np.in1d(u_y, i_xy, assume_unique=True)]
return i_idx_x, i_idx_y
For example:
x = np.array([4, 1, 10, 5, 8, 13, 11])
y = np.array([20, 5, 4, 9, 11, 7, 25])
i_idx_x, i_idx_y = intersect_indices(x, y)
print(i_idx_x, i_idx_y)
# (array([0, 3, 6]), array([2, 1, 4]))
Speed test:
In [1]: k = 1000000
In [2]: %%timeit x, y = np.random.randint(k, size=(2, k))
intersect_indices(x, y)
....:
1 loops, best of 3: 597 ms per loop
I initially missed the fact that in your case both x
and y
contain only unique values. Taking that into account, it's possible to do slightly better by using an indirect sort:
def intersect_indices_unique(x, y):
u_idx_x = np.argsort(x)
u_idx_y = np.argsort(y)
i_xy = np.intersect1d(x, y, assume_unique=True)
i_idx_x = u_idx_x[x[u_idx_x].searchsorted(i_xy)]
i_idx_y = u_idx_y[y[u_idx_y].searchsorted(i_xy)]
return i_idx_x, i_idx_y
Here's a more realistic test case, where x
and y
both contain unique (but partially overlapping) values:
In [1]: n, k = 10000000, 1000000
In [2]: %%timeit x, y = (np.random.choice(n, size=k, replace=False) for _ in range(2))
intersect_indices(x, y)
....:
1 loops, best of 3: 593 ms per loop
In [3]: %%timeit x, y = (np.random.choice(n, size=k, replace=False) for _ in range(2))
intersect_indices_unique(x, y)
....:
1 loops, best of 3: 453 ms per loop
@Divakar's solution is very similar in terms of performance:
In [4]: %%timeit x, y = (np.random.choice(n, size=k, replace=False) for _ in range(2))
searchsorted_based(x, y)
....:
1 loops, best of 3: 472 ms per loop
Upvotes: 3
Reputation: 221524
You could also use np.searchsorted
, like so -
def searchsorted_based(x,y):
# Get argsort for both x and y
xsort_idx = x.argsort()
ysort_idx = y.argsort()
# Sort x and y and store them
X = x[xsort_idx]
Y = y[ysort_idx]
# Find positions of Y in X and the matches by the positions that
# shift between 'left' and 'right' based searches.
# Use the matches posotions to get corresponding argsort for X.
x1 = np.searchsorted(X,Y,'left')
x2 = np.searchsorted(X,Y,'right')
out1 = xsort_idx[x1[x2 != x1]]
# Repeat for X in Y findings
y1 = np.searchsorted(Y,X,'left')
y2 = np.searchsorted(Y,X,'right')
out2 = ysort_idx[y1[y2 != y1]]
return out1, out2
Sample run -
In [100]: x = np.array([4, 1, 10, 5, 8, 13, 11])
...: y = np.array([20, 5, 4, 9, 11, 7, 25])
...:
In [101]: searchsorted_based(x,y)
Out[101]: (array([0, 3, 6]), array([2, 1, 4]))
Upvotes: 3
Reputation: 2236
Here's an option based on intersect1d
's implementation, which is fairly straightforward. It requires one call to argsort
.
The admittedly simplistic test passes.
import numpy as np
def my_intersect(x, y):
"""my_intersect(x, y) -> xm, ym
x, y: 1-d arrays of unique values
xm, ym: indices into x and y giving sorted intersection
"""
# basic idea taken from numpy.lib.arraysetops.intersect1d
aux = np.concatenate((x, y))
sidx = aux.argsort()
# Note: intersect1d uses aux[:-1][aux[1:]==aux[:-1]] here - I don't know why the first [:-1] is necessary
inidx = aux[sidx[1:]] == aux[sidx[:-1]]
# quicksort is not stable, so must do some work to extract indices
# (if stable, sidx[inidx.nonzero()] would be for x)
# interlace the two sets of indices, and check against lengths
xym = np.vstack((sidx[inidx.nonzero()],
sidx[1:][inidx.nonzero()])).T.flatten()
xm = xym[xym < len(x)]
ym = xym[xym >= len(x)] - len(x)
return xm, ym
def check_my_intersect(x, y):
mx, my = my_intersect(x, y)
assert (x[mx] == np.intersect1d(x, y)).all()
# not really necessary: np.intersect1d returns a sorted list
assert (x[mx] == sorted(x[mx])).all()
assert (x[mx] == y[my]).all()
def random_unique_unsorted(n):
while True:
x = np.unique(np.random.randint(2*n, size=n))
if len(x):
break
np.random.shuffle(x)
return x
x = np.array([4, 1, 10, 5, 8, 13, 11])
y = np.array([20, 5, 4, 9, 11, 7, 25])
check_my_intersect(x, y)
for i in range(20):
x = random_unique_unsorted(100+i)
y = random_unique_unsorted(200+i)
check_my_intersect(x, y)
Edit: "Note" comment was confusing (Used ...
as speech ellipsis, forgot it was a Python operator too).
Upvotes: 3
Reputation: 85442
Maybe a pure Python solutions using a dict works for you:
def indices_from_values(a, intersect):
idx = {value: index for index, value in enumerate(a)}
return np.array([idx[x] for x in intersect])
intersect = np.intersect1d(x, y)
mx = indices_from_values(x, intersect)
my = indices_from_values(y, intersect)
np.allclose(x[mx], y[my]) and np.allclose(x[mx], np.intersect1d(x, y))
Upvotes: 0