Reputation: 91
I’m working on tuning performance on a high-performance, high-capacity data engine which ultimately services an end-user web experience. Specifically, the piece delegated to me revolves around characterizing multi-threaded file IO and memory mapping of the data to local cache. In writing test applications to isolate the timing tall-poles, several questions have been exposed. The code has been minimized to perform only a system file open (open(O_RDONLY)
) call. I’m hoping that the result of this query helps us understand the fundamental low-level system processes so that a complete predictive (or at least relational) timing model can be understood. Suggestions are always welcome. We’ve seemed to hit a timing barrier, and would like to understand the behavior and determine whether that barrier can be broken.
The test program:
We’ve run tests multiple times, parametrically varying the thread count, file sizes, and whether the files are located on a local or remote server. Several questions have come up.
Observed results (opening remote files):
Observed results (opening files residing locally):
Also, we noticed that Local opens take about .01 ms and sequential network opens are 100x slower at 1ms. Opening network files, we get a linear throughput increase up to 8x with 8 threads, but 9+ threads do nothing. The network open calls seem to block after more than 8 simultaneous requests. What we expected was an initial delay equal to the network roundtrip, and then approximately the same throughput as local. Perhaps there is extra mutex locking done on the local and remote systems that takes 100x longer. Perhaps there is some internal queue of remote calls that only holds 8.
Expected results and questions to be answered either by test or by answers from forums like this one:
Development test setup:
Red Hat Enterprise Linux Server release 5.4 (Tikanga)
8-CPUS, each with characteristics as shown below:
processor : 0
vendor_id : GenuineIntel
cpu family : 6
model : 23
model name : Intel(R) Xeon(R) CPU X5460 @ 3.16GHz
stepping : 6
cpu MHz : 1992.000
cache size : 6144 KB
physical id : 0
siblings : 4
core id : 1
cpu cores : 4
apicid : 1
fpu : yes
fpu_exception : yes
cpuid level : 10
wp : yes
flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm syscall lm constant_tsc pni monitor ds_cpl vmx est tm2 ssse3 cx16 xtpr sse4_1 lahf_lm
bogomips : 6317.47
clflush size : 64
cache_alignment : 64
address sizes : 38 bits physical, 48 bits virtual
power management:
GNU C compiler, version:
gcc (GCC) 4.1.2 20080704 (Red Hat 4.1.2-46)
Upvotes: 4
Views: 1340
Reputation: 47114
Not sure if this is one of your issues, but it may be of use.
The one thing that struck me, while optimizing thousands of random reads on a single SATA disk, was that performing non-blocking I/O isn't so easy to do in linux in a clean way, without extra threads.
It is (currently) impossible to issue a non-blocking read()
on a block device; i.e. it will block for the 5 ms seek time the disk needs (and 5 ms is an eternity, at 3 GHz). Specifying O_NONBLOCK
to open()
only served some purpose for backward compatibility, with CD burners or something (this was a rather vague issue). Normally, open()
doesn't block or cache anything, it's mostly just to get a handle on a file to do some data I/O later.
For my purposes, mmap()
seemed to get me as close to the kernel handling of the disk as possible. Using madvise()
and mincore()
I was able to fully exploit the NCQ capabilities of the disk, which was simply proved by varying the queue depth of outstanding requests, which turned out to be inversely proportional to the total time taken to issue 10k reads.
Thanks to 64 bit memory addressing, using mmap()
to map an entire disk to memory is no problem at all. (on 32 bit platforms, you would need to map the parts of the disk you need using mmap64()
)
Upvotes: 1