Reputation: 183
I am trying to use class templates to matrices. But I have run into a problem with matrix multiplication.
template<typename T, unsigned int N, unsigned int M>
class Matrix : public MatrixBase<Matrix<T, N, M>, T, N, M> {
template<unsigned int K>
friend Matrix<T, N, K> operator*(const Matrix<T, N, M>& m1, const Matrix<T, M, K>& m2) {
Matrix<T, N, K> ret;
for (unsigned int n = 0; n != N; n++) {
for (unsigned int k = 0; k != K; k++) {
ret.i[n][k] = 0;
for (unsigned int m = 0; m != M; m++) {
ret.i[n][k] += m1.i[n][m]*m2.i[m][k];
}
}
}
return ret;
}
};
When it then comes to multiplying two mat4's(4x4 matrices), like so:
m_model = (m_view*m_model);
It gives the error Invalid operands to binary expression ('mat4' (aka 'Matrix<float, 4, 4>') and 'mat4')
. Having had a look online I can see this is not the intended use of function templates, as you have to assign on call the template arguments. Is there a way around this similar to what I first intended, i.e. automatic assignment of the template argument based on the second argument of the function?
Here are the definitions of MatrixBase and Matrix(aka mat4) respectively:
MatrixBase
template<typename T , unsigned int M>
struct ComponentColumn{
T& operator[](int m) {
return i[m];
}
const T& operator[](int m) const {
return i[m];
}
T i[M];
};
//-----------MATRIXBASE-----------
template <typename ChildT, typename T, unsigned int N, unsigned int M>
class MatrixBase {
public:
MatrixBase() {}
MatrixBase<ChildT, T, N, M> operator*=(const MatrixBase<ChildT, T, N, M>& m1) {
MatrixBase<ChildT, T, N, M> ret;
for (unsigned int n = 0; n != N; n++) {
for (int k = 0; k != M; k++) {
ret.i[n][k] = 0;
for (unsigned int m = 0; m != M; m++) {
ret.i[n][k] += (*this).i[n][m]*m1.i[m][k];
}
}
}
*this = ret;
return ret;
}
MatrixBase<ChildT, T, N, M> operator+(const MatrixBase<ChildT, T, N, M>& m1) {
MatrixBase<ChildT, T, N, M> ret;
for (int n = 0; n != N; n++) {
for (int m = 0; m != M; m++) {
ret.i[n][m] = i[n][m];
}
}
return ret;
}
ComponentColumn<T, M>& operator[](int n) {
return this->i[n];
}
const ComponentColumn<T, M>& operator[](int n) const {
return this->i[n];
}
explicit operator T*() {
return &(*this)[0][0];
}
protected:
ComponentColumn<T, M> i[N];
};
mat4
template<typename T>
class Matrix<T, 4, 4> : public MatrixBase<Matrix<T, 4, 4>, T, 4, 4> {
public:
Matrix<T, 4, 4>() {
for (unsigned int n = 0; n != 4; n++) {
for (unsigned int m = 0; m != 4; m++) {
if (n == m) {
(*this)[n][m] = 1;
} else {
(*this)[n][m] = 0;
}
}
}
}
Matrix<T, 4, 4>(const Matrix<T, 3, 3>& m) {
(*this)[0][0] = m[0][0]; (*this)[1][0] = m[1][0]; (*this)[2][0] = m[2][0]; (*this)[3][0] = 0;
(*this)[0][1] = m[0][1]; (*this)[1][1] = m[1][1]; (*this)[2][1] = m[2][1]; (*this)[3][1] = 0;
(*this)[0][2] = m[0][2]; (*this)[1][2] = m[1][2]; (*this)[2][2] = m[2][2]; (*this)[3][2] = 0;
(*this)[0][3] = 0; (*this)[1][3] = 0; (*this)[2][3] = 0; (*this)[3][3] = 1;
}
static Matrix<T, 4, 4> Translate(T x, T y, T z);
static Matrix<T, 4, 4> Translate(const vec3& v);
static Matrix<T, 4, 4> Scale(T s);
static Matrix<T, 4, 4> Rotate(T degrees);
static Matrix<T, 4, 4> Frustum(T left, T right, T bottom, T top, T near, T far);
explicit operator Matrix<T, 3, 3>() {
Matrix<T, 3, 3> ret;
for (int n = 0; n != 3; n++) {
for (int m = 0; m != 3; m++) {
ret[n][m] = (*this)[n][m];
}
}
return ret;
}
Matrix<T, 4, 4> Transpose() {
Matrix<T, 4, 4> ret = Matrix<T, 4, 4>();
for (unsigned int n = 0; n != 4; n++) {
for (unsigned int m = 0; m != 4; m++) {
ret.i[n][m] = this->i[m][n];
}
}
*this = ret;
return ret;
}
Matrix<T, 4, 4> Inverse();
};
Upvotes: 0
Views: 2455
Reputation: 29332
Not an answer, but to share what worked for me and assure the correctness of the method of defining the multiplication operator:
template<typename T, unsigned int N, unsigned int M>
class Matrix {
public:
template<unsigned int K>
friend Matrix<T, N, K> operator*(const Matrix<T, N, M>& m1, const Matrix<T, M, K>& m2) {
Matrix<T, N, K> ret;
for (unsigned int n = 0; n != N; n++) {
for (unsigned int k = 0; k != K; k++) {
ret.i[n][k] = 0;
for (unsigned int m = 0; m != M; m++) {
ret.i[n][k] += m1.i[n][m] * m2.i[m][k];
}
}
}
return ret;
}
array<array<T, M>, N> i;
};
int main() {
Matrix<float, 4, 6> m1; Matrix<float, 6, 10> m2;
auto m3 = (m1 * m2);
cout << m3.i[0][0] << m3.i[3][9] << "\n";
system("pause");
}
Upvotes: 1
Reputation: 872
Unless you are doing this for practice, which would be a good exercise, I would just use an existing linear algebra library which implements matrix vector operations. Such as Armadillo: http://arma.sourceforge.net/
Upvotes: 2