Reputation: 1
I am trying to figure out how to count all numbers between two ints(a and b), where all of the digits are divisible with another int(k) and 0 counts as divisible.Here is what I've made so far, but it is looping forever.
for (int i = a; i<=b; i++){
while (i < 10) {
digit = i % 10;
if(digit % k == 0 || digit == 0){
count ++;
}
i = i / 10;
}
}
Also I was thinking about comparing if all of the digits were divisible by counting them and comparing with number of digits int length = (int)Math.Log10(Math.Abs(number)) + 1;
Any help would be appreciated. Thank you!
Upvotes: 0
Views: 113
Reputation: 1808
Once you get in to your while
block you're never going to get out of it. The while
condition is when i
less than 10. You're dividing i
by 10 at the end of the whole
block. i
will never have a chance of getting above 10.
Upvotes: 3
Reputation: 1038
Ok, so there are quite a few things going on here, so we'll take this a piece at a time.
for (int i = a; i <= b; i++){
// This line is part of the biggest problem. This will cause the
// loop to skip entirely when you start with a >= 10. I'm assuming
// this is not the case, as you are seeing an infinite loop - which
// will happen when a < 10, for reasons I'll show below.
while (i < 10) {
digit = i % 10;
if(digit % k == 0 || digit == 0){
count ++;
// A missing line here will cause you to get incorrect
// results. You don't terminate the loop, so what you are
// actually counting is every digit that is divisible by k
// in every number between a and b.
}
// This is the other part of the biggest problem. This line
// causes the infinite loop because you are modifying the
// variable you are using as the loop counter. Mutable state is
// tricky like that.
i = i / 10;
}
}
It's possible to re-write this with minimal changes, but there are some improvements you can make that will provide a more readable result. This code is untested, but does compile, and should get you most of the way there.
// Extracting this out into a function is often a good idea.
private int countOfNumbersWithAllDigitsDivisibleByN(final int modBy, final int start, final int end) {
int count = 0;
// I prefer += to ++, as each statement should do only one thing,
// it's easier to reason about
for (int i = start; i <= end; i += 1) {
// Pulling this into a separate function prevents leaking
// state, which was the bulk of the issue in the original.
// Ternary if adds 1 or 0, depending on the result of the
// method call. When the methods are named sensibly, I find
// this can be more readable than a regular if construct.
count += ifAllDigitsDivisibleByN(modBy, i) ? 1 : 0;
}
return count;
}
private boolean ifAllDigitsDivisibleByN(final int modBy, final int i) {
// For smaller numbers, this won't make much of a difference, but
// in principle, there's no real reason to check every instance of
// a particular digit.
for(Integer digit : uniqueDigitsInN(i)) {
if ( !isDigitDivisibleBy(modBy, digit) ) {
return false;
}
}
return true;
}
// The switch to Integer is to avoid Java's auto-boxing, which
// can get expensive inside of a tight loop.
private boolean isDigitDivisibleBy(final Integer modBy, final Integer digit) {
// Always include parens to group sub-expressions, forgetting the
// precedence rules between && and || is a good way to introduce
// bugs.
return digit == 0 || (digit % modBy == 0);
}
private Set<Integer> uniqueDigitsInN(final int number) {
// Sets are an easy and efficient way to cull duplicates.
Set<Integer> digitsInN = new HashSet<>();
for (int n = number; n != 0; n /= 10) {
digitsInN.add(n % 10);
}
return digitsInN;
}
Upvotes: 0
Reputation: 11651
Try this one
public class Calculator {
public static void main(String[] args) {
int a = 2;
int b = 150;
int k = 3;
int count = 0;
for (int i = a; i <= b; i++) {
boolean isDivisible = true;
int num = i;
while (num != 0) {
int digit = num % 10;
if (digit % k != 0) {
isDivisible = false;
break;
}
num /= 10;
}
if (isDivisible) {
count++;
System.out.println(i+" is one such number.");
}
}
System.out.println("Total " + count + " numbers are divisible by " + k);
}
}
Upvotes: 0