Reputation: 2014
data = [['A', 'B', 'C', 'D'],
['E', 'F', 'G'],
['I', 'J'],
['A', 'B', 'C', 'E', 'F']]
I would like to remove unpopular elements (appearing only once) from the lists. So the results should look like this:
data = [['A', 'B', 'C'],
['E', 'F'],
['A', 'B', 'C', 'E', 'F']]
I was able to count the frequency of each element using the following codes:
from collections import Counter
Counter(x for sublist in data for x in sublist)
#output
Counter({'A': 2, 'C': 2, 'B': 2, 'E': 2, 'F': 2, 'D': 1, 'G': 1, 'I': 1, 'J': 1})
However, I am not sure how to use this count information to remove unpopular elements from the list. Any help?
Upvotes: 1
Views: 192
Reputation: 1557
The complexity is similar. Just use map and filter function to make the code more pythonic.
from collections import Counter
data = [['A', 'B', 'C', 'D'],
['E', 'F', 'G'],
['I', 'J'],
['A', 'B', 'C', 'E', 'F']]
counter = Counter({'A': 2, 'C': 2, 'B': 2, 'E': 2, 'F': 2, 'D': 1, 'G': 1, 'I': 1, 'J': 1})
result = map(lambda row: filter(lambda x: counter.get(x) > 1, row), data)
print result
Upvotes: 1
Reputation: 368874
Generate the new list based on the frequency information.
The following code uses nested list comprehension to do that:
from collections import Counter
freq = Counter(x for sublist in data for x in sublist)
data = [[x for x in row if freq[x] > 1] for row in data] # Remove non-popular item
data = [row for row in data if row] # Remove empty rows
# data => [['A', 'B', 'C'], ['E', 'F'], ['A', 'B', 'C', 'E', 'F']]
Upvotes: 1