Reputation: 3218
I'm implementing in Idris the algorithm and proofs of first-order unification by structural recursion (current status of the development available here).
Idris in giving me the following error message
`-- UnifyProofs.idr line 130 col 60:
When checking right hand side of maxEquiv with expected type
(Max p n f -> Max q n f, Max q n f -> Max p n f)
When checking argument b to constructor Builtins.MkPair:
No such variable k
when it tries to type check the following function
maxEquiv : p .=. q -> Max p .=. Max q
maxEquiv pr n f = ( \ a => ( fst (pr n f) (fst a)
, \ n1 => \ g => \pr1 => (snd a) n1 g
(snd (pr n1 g) pr1))
, \ a' => (snd (pr n f) (fst a')
, \ n2 => \ g' => \ pr2 => (snd a') n2 g'
(fst (pr n2 g') pr2)))
where Max and .=. are defined as
Property : (m : Nat) -> Type
Property m = (n : Nat) -> (Fin m -> Term n) -> Type
infix 5 .=.
(.=.) : Property m -> Property m -> Type
(.=.) {m = m} P Q = (n : Nat) -> (f : Fin m -> Term n) ->
Pair (P n f -> Q n f)
(Q n f -> P n f)
Max : (p : Property m) -> Property m
Max {m = m} p = \n => \f => (p n f , (k : Nat) -> (f' : Fin m -> Term k) ->
p k f' -> f' .< f)
I've tried to pass all function arguments explicitly in order to avoid problems with implicit argument inference. But the error persists. Could someone provide me some tip on how can I solve this?
Upvotes: 1
Views: 87
Reputation: 3218
Here is the solution to my question:
Max : (p : Property m) -> Property m
Max {m = m} p = \n => \f => (p n f , (k : Nat) -> (f' : Fin m -> Term k) -> p k f' -> f' .< f)
applySnd : Max {m = m} p n f -> (k : Nat) -> (f' : Fin m -> Term k) -> p k f' -> f' .< f
applySnd = snd
maxEquiv : p .=. q -> Max p .=. Max q
maxEquiv pr n f = ( \ a => ( fst (pr n f) (fst a)
, \ n1 => \ g => \pr1 => (applySnd a) n1 g (snd (pr n1 g) pr1))
, \ a' => (snd (pr n f) (fst a
, \ n2 => \ g' => \ pr2 => (applySnd a') n2 g' (fst (pr n2 g') pr2)))
I just have used a function applySnd to make the same thing as snd. I do not know why this is necessary... Probably a Idris bug...
Upvotes: 0