Reputation: 1418
The issue is that I have a method starting a new thread for a time-consuming work. I want to test the callback result, but the child thread may still running, so as a result, what I get is not the right stub.
I think the code may explain itself:
public class JustAClass {
//it is a callback for async
public interface JustACallBack {
void callFunc(JustAResult result);
}
//this is the result interface
public interface JustAResult {
}
//this is a real class for the interface
public class JustAResultReal implements JustAResult{
public JustAResultReal(String content) {this.content = content;}
public String content;
}
//here is the key function
public void threadFunc(final JustACallBack callBack) {
BCCache.executorService.execute(new Runnable() {
@Override
public void run() {
//just to simulate a time-consuming task
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
//now we callback
callBack.callFunc(new JustAResultReal("can you reach me"));
}
});
}
}
and the test function could be(I am using mockito
):
@Test
public void testThreadFunc() throws Exception {
JustAClass justAClass = new JustAClass();
JustAClass.JustACallBack callBack = Mockito.mock(JustAClass.JustACallBack.class);
justAClass.threadFunc(callBack);
//add this line, we can get the expected result
Thread.sleep(1200);
Mockito.verify(callBack).callFunc(captor.capture());
System.out.println(((JustAClass.JustAResultReal)captor.getValue()).content);
}
I know we can add a sleep
to wait and expect that the child thread would exit within the period, but could there be a better way? Actually how could I know how long the child thread would take? Setting a very long time can be an approach but just seems not very nice.
Upvotes: 2
Views: 11301
Reputation: 5117
The general approach in @stalet's answer is close, but doesn't quite work since any assertion failures from a separate thread are not noticed by the main thread. Therefore your test will always pass, even when it shouldn't. Instead, try using ConcurrentUnit (which I authored):
@Test
public void testInvoke() throws Throwable {
Waiter waiter = new Waiter();
JustAClass justAClass = new JustAClass();
JustAClass.JustACallBack callBack = new JustAClass.JustACallBack() {
@Override
public void callFunc(final JustAClass.JustAResult result) {
waiter.assertNotNull(result);
waiter.assertTrue(result instanceof JustAClass.JustAResultReal);
waiter.resume();
}
};
justAClass.threadFunc(callBack);
waiter.await(1200, TimeUnit.SECONDS);
}
The key here is ConcurrentUnit's Waiter
will properly report any assertions failures to the main test thread and the test will pass or fail as it should.
Upvotes: 2
Reputation: 1365
I aggree with @Gimbys comment about this is no longer a unit-test when you start testing the the threading aspect.
Nevertheless it is interesting as a way to integration-test a asynchronous invokation.
To avvoid sleep i tend to use the class CountDownLatch to wait for invokations. In order to count down you need an actuall implementation of the callback interface - so in my example I have made a mock implementation of this.
Since there is no actual methods to fetch the data - i am just testing that it is in fact a instance of the JustAReal interface.
@Test
public void testInvoke() throws Exception {
final CountDownLatch countDownLatch = new CountDownLatch(1); //1 is how many invokes we are waiting for
JustAClass justAClass = new JustAClass();
JustAClass.JustACallBack callBack = new JustAClass.JustACallBack() {
@Override
public void callFunc(final JustAClass.JustAResult result) {
assertNotNull("Result should not be null", result);
assertTrue("Result should be instance of JustAResultReal", result instanceof JustAClass.JustAResultReal);
countDownLatch.countDown();
}
};
justAClass.threadFunc(callBack);
if(!countDownLatch.await(1200, TimeUnit.MILLISECONDS)){
fail("Timed out, see log for errors");
}
}
Upvotes: 1