Reputation: 35
Could anyone help me to write the mapper and reducer for merging these two files and then removing the duplicate records?
These are the two text files:
file1.txt
2012-3-1a
2012-3-2b
2012-3-3c
2012-3-4d
2012-3-5a
2012-3-6b
2012-3-7c
2012-3-3c
and file2.txt:
2012-3-1b
2012-3-2a
2012-3-3b
2012-3-4d
2012-3-5a
2012-3-6c
2012-3-7d
2012-3-3c
Upvotes: 0
Views: 2690
Reputation: 124
Here's code to remove duplicate lines in large text data, which uses hash for efficiency:
DRMapper.java
import com.google.common.hash.Hashing;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
import java.nio.charset.StandardCharsets;
class DRMapper extends Mapper<LongWritable, Text, Text, Text> {
private Text hashKey = new Text();
private Text mappedValue = new Text();
@Override
public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
String line = value.toString();
hashKey.set(Hashing.murmur3_32().hashString(line, StandardCharsets.UTF_8).toString());
mappedValue.set(line);
context.write(hashKey, mappedValue);
}
}
DRReducer.java
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
public class DRReducer extends Reducer<Text, Text, Text, NullWritable> {
@Override
public void reduce(Text key, Iterable<Text> values, Context context)
throws IOException, InterruptedException {
Text value;
if (values.iterator().hasNext()) {
value = values.iterator().next();
if (!(value.toString().isEmpty())) {
context.write(value, NullWritable.get());
}
}
}
}
DuplicateRemover.java
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class DuplicateRemover {
private static final int DEFAULT_NUM_REDUCERS = 210;
public static void main(String[] args) throws Exception {
if (args.length != 2) {
System.err.println("Usage: DuplicateRemover <input path> <output path>");
System.exit(-1);
}
Job job = new Job();
job.setJarByClass(DuplicateRemover.class);
job.setJobName("Duplicate Remover");
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.setMapperClass(DRMapper.class);
job.setReducerClass(DRReducer.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
job.setNumReduceTasks(DEFAULT_NUM_REDUCERS);
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
compile with:
javac -encoding UTF8 -cp $(hadoop classpath) *.java
jar cf dr.jar *.class
Assuming that the input text files are in in_folder, run as:
hadoop jar dr.jar in_folder out_folder
Upvotes: 0
Reputation: 141
A simple word count program will do the job for you. The only change you need to make is, set the output value of the Reducer as NullWritable.get()
Upvotes: 2
Reputation: 23
Is there a common key in both the files which helps identify if record matched or not? If so then: Mappers Input: Standard TextInputFormat Mapper's Output Key : Common Key and Mapper's output Value : Entire Record. At reducer : It will not be required to iterate over the Keys just take only 1 instance of the Value for Write.
If the match or duplicacy can be concluded only if complete record matched: then Mappers Input: Standard TextInputFormat Mapper's Output Key : Entire Record and Mapper's output Value : NullWritable. At reducer: It will not be required to iterate over the Keys. Just take only one instance of Key and write that as a Value. Reducer Output Key: Reducer Input Key, Reducer Output Value : NullWritable
Upvotes: 0