Reputation: 109
https://ringpop.readthedocs.org/en/latest/
To my understanding, the sharding can be implemented in some library routines, and the application programs are just linked with the library. If the library is a RPC client, the sharding can be queried from the server side in real-time. So, even if there is a new partition, it is transparent to the applications.
Ringpop is application-layer sharding strategy, based on SWIM membership protocol. I wonder what is the major advantage at the application layer?
What is the other side, say the sharding in the system layer?
Thanks!
Upvotes: 1
Views: 1331
Reputation: 616
Maybe a bit late for this reply, but maybe someone still needs this information.
Ringpop has introduced the idea of 'sharding' inside application rather then data. It works more or less like an application level middleware, but with the advantage that it offers an easy way to build scalabale and fault-tolerance applications.
The things that Ringpop shards are the requests coming from clients to a specific service. This is one of its major advantages (there are mores, keep reading).
In a traditional SOA architecure, all requests for a specific serveice goes to a unique system that dispatch them among the workers for load balancing. These workers do not know each other, they are indipendent entities and cannot communicate between them. They do their job and sent back a reply.
Ringpop is the opposite: the workers know each other and can discover new ones, regularly talk among them to check their healthy status, and spread this information with the other workers.
How Ringpop shard the request? It uses the concept of keyspaces. A keyspace is just a range of number, e.g. you are free to choice the range you like, but the obvious choice is hash the IDs of the objects in the application and use the hashing-function's codomain as range.
A keyspace can be imaginated as an hash "ring", but in practice is just a 4 or 8 byte integer.
A worker, e.g. a node that can serve a request for a specific service, is 'virtually' placed on this ring, e.g. it owns a contiguous portion of the ring. In practice, it has assigned a sub-range. A worker is in charge to handle all the requests belonging to its sub-range. Handle a request means two things: - process the request and provide a response, or - forward the request to another service that actually knows how to serve it
Every application is build with this behaviour embedded. There is the logic to handle a request or just forward it to another service that can handle it. The forwarding mechanism is nothing more than a remote call procedure, which is actually made using TChannel, the Uber's high performance forwarding for general RPC.
If you think on this, you can figure out that Ringpop is actually offering a very nice thing that traditionals SOA architecture do not have. The clients don't need to know or care about the correct instance that can serve their request. They can just send a request anywhere in Ringpop, and the receiver worker will serve it or forward to the rigth owner.
Ringpop has another interesting feature. New workers can dinamically enter the ring and old workers can leave the ring (e.g. because a crash or just a shutdown) without any service interrputions. Ringpop implements a membership protocol based on SWIM. It enable workers to discover each another and exclude a broken worker from the ring using a tcp-based gossip protocol. When a new worker is discovered by another worker, a new connection is established between them. Every worker map the status of the other workers sending a ping request at regular time intervals, and spread the status information with the other workers if a ping does not get a reply (e.g. piggyback membership update on a ping / gossip based)
These 3 elements consistent hashing, request forwarding and a membership protocol, make Ringpop an interesting solution to promote scalability and fault tolerance at application layer while keeping the complexity and operational overhead to a minimum.
Upvotes: 10