Reputation: 830
I got one huge dataset I simplified for this question and I try to apply a function to each row of it in function of one specific column.
I tried a for-loop approach and then did some profiling with Rprof
and profvis
. I know that I could try some apply or other approach but the profiling seems to say that the slowest parts are due to other steps.
This is what I want to do :
library(dplyr)
# Example data frame
id <- rep(c(1:100), each = 5)
ab <- runif(length(id), 0, 1)
char1 <- runif(length(id), 0, 1)
char2 <- runif(length(id), 0, 1)
dat <- data.frame(cbind(id, ab, char1, char2))
dat$result <- NA
# Loop
com <- unique(id)
for (k in com){
dat_k <- filter(dat, id==k) # slowest line
dat_k_dist <- cluster::daisy(dat_k[, c("char1", "char2")], metric = "gower") %>% as.matrix()
num <- apply(dat_k_dist, 2, function(x) sum(x * dat_k[, "ab"]))
denom <- sum(dat_k[, "ab"]) - dat_k[, "ab"]
dat_k[, "result"] <- as.numeric(num / denom)
dat[which(dat$id==k), "result"] <- dat_k$result # 2nd slowest line
}
The slowest parts of my code are due to the lines with filter
and then when I reallocate the result obtained into the original data frame. I tried to replace filter function with a subset
or a which
but it's even slower.
Thus, the organization of this code should be improved but I don't really see how.
Upvotes: 0
Views: 249
Reputation: 4907
I get a minor speedup via lapply
:
library(microbenchmark)
microbenchmark(
OP=
for (k in com){
dat_k <- filter(dat, id==k) # slowest line
dat_k_dist <- cluster::daisy(dat_k[, c("char1", "char2")], metric = "gower") %>% as.matrix()
num <- apply(dat_k_dist, 2, function(x) sum(x * dat_k[, "ab"]))
denom <- sum(dat_k[, "ab"]) - dat_k[, "ab"]
dat_k[, "result"] <- as.numeric(num / denom)
dat[which(dat$id==k), "result"] <- dat_k$result # 2nd slowest line
},
phiver=
for (k in com){
dat_k <- dat[id == k, ] # no need for filter
dat_k_dist <- cluster::daisy(dat_k[, c("char1", "char2")], metric = "gower") %>% as.matrix()
num <- apply(dat_k_dist, 2, function(x) sum(x * dat_k[, "ab"]))
denom <- sum(dat_k[, "ab"]) - dat_k[, "ab"]
dat_k[, "result"] <- as.numeric(num / denom)
dat[id==k, "result"] <- dat_k$result # 2nd no need for which
},
alex= {
dat2 <- split(dat, factor(dat$id))
dat2 <- lapply(dat2, function(l) {
dat_k_dist <- cluster::daisy(l[, c("char1", "char2")], metric = "gower") %>% as.matrix()
num <- apply(dat_k_dist, 2, function(x) sum(x * l[, "ab"]))
denom <- sum(l[, "ab"]) - l[, "ab"]
l[, "result"] <- as.numeric(num / denom)
return(l)
})
dat$result <- Reduce("c",lapply(dat2, function(l) l$result))
})
Unit: milliseconds
expr min lq mean median uq max neval cld
OP 126.72184 129.94344 133.47666 132.11949 134.14558 196.44860 100 c
phiver 73.78996 77.13434 79.61202 78.21638 79.81958 139.15854 100 b
alex 67.86450 71.61277 73.26273 72.34813 73.50353 90.31229 100 a
But this is also an embarrasingly parallel problem, so we can parallelize it. Note: this WILL NOT be faster on the example data because of the overhead from parallel. But it should be faster on your so-called "huge dataset"
library(parallel)
cl <- makeCluster(detectCores())
dat$result <- Reduce("c", parLapply(cl, dat2, fun= function(l) {
dat_k_dist <- as.matrix(cluster::daisy(l[, c("char1", "char2")], metric = "gower"))
num <- apply(dat_k_dist, 2, function(x) sum(x * l[, "ab"]))
denom <- sum(l[, "ab"]) - l[, "ab"]
return(as.numeric(num / denom))
}))
stopCluster(cl)
Upvotes: 2
Reputation: 23608
The following for loop is a bit faster. No need for dplyr or which statement.
for (k in com){
dat_k <- dat[id == k, ] # no need for filter
dat_k_dist <- cluster::daisy(dat_k[, c("char1", "char2")], metric = "gower") %>% as.matrix()
num <- apply(dat_k_dist, 2, function(x) sum(x * dat_k[, "ab"]))
denom <- sum(dat_k[, "ab"]) - dat_k[, "ab"]
dat_k[, "result"] <- as.numeric(num / denom)
dat[id==k, "result"] <- dat_k$result # 2nd no need for which
}
Upvotes: 1