Reputation: 845
I am extracting 150 different cell values from 350,000 (20kb) ascii raster files. My current code is fine for processing the 150 cell values from 100's of the ascii files, however it is very slow when running on the full data set.
I am still learning python so are there any obvious inefficiencies? or suggestions to improve the below code.
I have tried closing the 'dat' file in the 2nd function; no improvement.
dat = None
First: I have a function which returns the row and column locations from a cartesian grid.
def world2Pixel(gt, x, y):
ulX = gt[0]
ulY = gt[3]
xDist = gt[1]
yDist = gt[5]
rtnX = gt[2]
rtnY = gt[4]
pixel = int((x - ulX) / xDist)
line = int((ulY - y) / xDist)
return (pixel, line)
Second: A function to which I pass lists of 150 'id','x' and 'y' values in a for loop. The first function is called within and used to extract the cell value which is appended to a new list. I also have a list of files 'asc_list' and corresponding times in 'date_list'. Please ignore count / enumerate as I use this later; unless it is impeding efficiency.
def asc2series(id, x, y):
#count = 1
ls_id = []
ls_p = []
ls_d = []
for n, (asc,date) in enumerate(zip(asc, date_list)):
dat = gdal.Open(asc_list)
gt = dat.GetGeoTransform()
pixel, line = world2Pixel(gt, east, nort)
band = dat.GetRasterBand(1)
#dat = None
value = band.ReadAsArray(pixel, line, 1, 1)[0, 0]
ls_id.append(id)
ls_p.append(value)
ls_d.append(date)
Many thanks
Upvotes: 0
Views: 540
Reputation: 2253
gdal.Open(asc)
-- not asc_list
.gt = dat.GetGeoTransform()
out of the loop.world2Pixel
.Upvotes: 1