Reputation: 1465
I have a pandas dataframe that looks like
Name Date Value
Sarah 11-01-2015 3
Sarah 11-02-2015 2
Sarah 11-03-2015 27
Bill 11-01-2015 42
Bill 11-02-2015 5
Bill 11-03-2015 15
.... (a couple hundred rows)
How do I get a 30 day (or x day) rolling sum of these values broken out by whoever is in the 'Name' column? The ideal output would have the same columns as the current dataframe, but instead of having the values for each row be what that person had as a value for that day, it would be the cumulative sum of what their values over the past 30 days.
I know I can do
result = pd.rolling_sum(df, 30)
to get the rolling sum overall. But how do I return a dataframe with that rolling sum grouped by the 'Name' column?
Upvotes: 1
Views: 3666
Reputation: 11
Note that if you don't need a precise temporal window, or if your dataset has 1 line per [day , user] (which seems to be your case), then the standard groupby of pandas is perfectly suited. See this very similar question
Otherwise, something like:
df.groupby('Name').rolling('30D', on="Date").Value.sum()
should work.
Upvotes: 0
Reputation: 1465
Figured it out using the grigri group_resample function.
df = group_resample(df,date_column='Date',groupby=group_by,value_column='Value',how='sum',freq='d')
df = df.unstack(group_by).fillna(0)
result = pd.rolling_mean(df,30)
Upvotes: 1