Reputation: 791
To calculate the nth term of the fibonacci sequence, I have the familiar recursive function:
var fibonacci = function(index){
if(index<=0){ return 0; }
if(index===1){ return 1; }
if(index===2){ return 2; }
return fibonacci(index-2) + fibonacci(index-1);
}
This works as expected. Now, I am trying to store calculated indices in an object:
var results = {
0: 0,
1: 1,
2: 2
};
var fibonacci = function(index){
if(index<=0){ return 0; }
if(index===1){ return 1; }
if(index===2){ return 2; }
if(!results[index]){
results[index] = fibonacci(index-2) + fibonacci(index-1);
}
}
I know this isn't actually increasing performance since I'm not accessing the results object, but I wanted to check first if my results object was being populated correctly before memoizing. Unfortunately, it isn't. For fibonacci(9), I get:
Object {0: 0, 1: 1, 2: 2, 3: 3, 4: NaN, 5: NaN, 6: NaN, 7: NaN, 8: NaN, 9: NaN}
Why am I getting NaN for indices past 3?
Upvotes: 4
Views: 10985
Reputation: 1170
The recursive Fibonacci consume too much processing power which is not good for application. to improve this we use Memoization. which keeps the computed result store in Array. so next when the same value comes it will simply return the Stored value from the computed Array.
function memoizeFibonacci(element, memo = {}) {
if (element < 3) return 1;
if (element in memo) return memo[element];
memo[element] = memoizeFibonacci(element - 1, memo) + memoizeFibonacci(element - 2, memo);
return memo[element];
}
let a = 15;
console.log('Memoize febonaci', memoizeFibonacci(a));
Upvotes: 3
Reputation: 1
Here's my solution achieving memoization using a non-recursive approach.
// The Fibonacci numbers.
// 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ……..
function fibonacci(n) {
const map = new Map(); // Objects can also be used
map.set(0,1); // seed value for f(0)
map.set(1,1); // seed value for f(1)
for(let i=2; i < n - 1; i++) {
const result = map.get(i - 1) + map.get(i - 2);
map.set(i,result);
}
return map.get(n - 2);
}
console.log(fibonacci(20)); // 4181
Upvotes: 0
Reputation: 21
const f = (n, memo = [0, 1, 1]) => memo[n] ? memo[n] : (memo[n] = f(n - 1, memo) + f(n - 2, memo)) && memo[n]
console.log(f(70))
Upvotes: 1
Reputation: 32713
Here is my object orientated attempt.
var memofib = {
memo : {},
fib : function(n) {
if (n === 0) {
return 0;
} else if (n === 1) {
return 1;
} else {
if(this.memo[n]) return this.memo[n];
return this.memo[n] = this.fib(n - 1) + this.fib(n - 2);
}
}
};
console.log(memofib.fib(10));
Upvotes: 0
Reputation: 396
Here's a solution using "Helper Method Recursion":
function fib(n) {
const memorize = {};
function helper(n) {
if (n in memorize) return memorize[n];
if (n < 3) return 1;
return memorize[n] = helper(n - 1) + helper(n - 2);
}
return helper(n);
}
Upvotes: 6
Reputation: 6916
Here're my solutions
With Memoization (Dynamic Programming) (Time complexity approximately O(n))
const results = {}
function fib(n) {
if (n <= 1) return n
if (n in results) {
return results[n]
}
else {
results[n] = fib(n - 2) + fib(n - 1)
}
return results[n]
}
console.log(fib(100))
Without Memoization (Time complexity approximately O(2^n))
function fib(n) {
if (n <= 1) return n
return fib(n - 1) + fib(n - 2)
}
console.log(fib(10))
Upvotes: 0
Reputation: 1391
Here is my solution:
function fib(n, res = [0, 1, 1]) {
if (res[n]) {
return res[n];
}
res[n] = fib(n - 1, res) + fib(n - 2, res);
return res[n];
}
console.log(fib(155));
Upvotes: 5
Reputation: 791
Going to close the loop on this answer by posting @Juhana's comment:
"Because your function doesn't return anything when index > 2"
Upvotes: 1
Reputation: 1044
I have added some additions.
var results = {};
var fibonacci = function (index) {
if (index <= 0) return 0;
if (index == 1 || index == 2) return 1;
return fibonacci(index - 2) + fibonacci(index - 1);
};
for (var i = 1; i <= 10; i++) {
results[i] = fibonacci(i);
}
console.log(results);
Upvotes: -1